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• As Simple as Schrödinger Theory in Atomic Physics

• Relativistic, Frame-Independent, Color-Confining

• QCD Coupling at all scales

• Hadron Spectroscopy

• Light-Front Wavefunctions

• Form Factors, Hadronic Observables, Constituent 
Counting Rules

• Insight into QCD Condensates

• Systematically improvable

Goal: An analytic first approximation to QCD
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Dirac’s Amazing  Idea: 
The Front Form

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has
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Instant Form Front Form 

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

Evolve in 
light-front time!

Evolve in 
ordinary time

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)
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Light-Front QCD

Eigenvalues and Eigensolutions give Hadronic 
Spectrum and Light-Front wavefunctions
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Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
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L
QCD → H

QCD
LF

H
int
LF : Matrix in Fock Space

Physical gauge: A+ = 0

4

Exact formulation of nonperturbative QCD

H
int
LF



 

In terms of the hadron four-momentum P =
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
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#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
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]"n : x
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where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Matrix 
Formulation

Light-Front QCD

Pauli, Hornbostel  & sjb

DLCQ
Discretized Light-Cone 

Quantization

Eigenvalues and Eigensolutions give Hadron Spectrum 
and Light-Front wavefunctions

e.g. solve QCD(1+1): arbitrary color, flavor, quark mass 5
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number of coupled integral eigenvalue equations, 
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where V is the interaction part of HLC. Diagrammatically, V involves completely 

irreducible interactions--i.e. diagrams having no internal propagators-coupling 

Fock states (Fig. 5). These equations determine the hadronic spectrum and 

xJ= 
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0 
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- - IL 7 - - . . . . . . 
Figure 5. Coupled eigenvalue equations for the light-cone wa.vefunctious of a 

pion. 

wave functions. Although the potential is essentially trivial, the many channels 

required to describe an hadronic state make these equations very difficult to solve. 

Nevertheless the first attempts at a direct solution have been made. 

The bulk of the probability for a nonrelativistic system is in a single Fock 

state-e.g. (eE> for positronium, or Ibb) for the r meson. For such systems it 

is useful to replace the full set of multi-channel eigenvalue equations by a single 

equation for the dominant wavefunction. To see how this can be done, note that 

the bound state equation, say for positronium, can be rewritten as two equations 

using the projection operator P onto the subspace spanned by eE states, and its 

complement & E 1 - P: 

Hpp IPs)~ + HPQ IPs)~ = h4” IPs)p 

(29) 

H&p [Ps)~ + HQQ jP& = hf” h)g 

where H~Q E PHQ.. ., and lPsjp E P jPs) . . . . Solving the second of these 

equations for IPs)~ and substituting the result into the first equation, we obtain 

a single equation for the ee or valence part of the positronium state: 

Her [Ps)~ = Al2 IPS)P (30) 
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LIGHT-FRONT SCHRODINGER EQUATION

G.P. Lepage, sjbA+ = 0

Υ→ ggg → d̄X

Υ→ ggg → p̄n̄X

R = Γ(Υ→d̄X)
Γ(Υ→p̄n̄X)

R = C

ū(x) �= d̄(x)

s̄(x) �= s(x)

Direct connection to QCD Lagrangian



 

|p,Sz>= ∑
n=3

ψn(xi, �k⊥i,λi)|n;k⊥i,λi>|p,Sz>= ∑
n=3

Ψn(xi,�k⊥i,λi)|n;�k⊥i,λi>

|p,Sz>= ∑
n=3

Ψn(xi,�k⊥i,λi)|n;�k⊥i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,�k⊥i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
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k0i + kzi
P0+Pz

are boost invariant.
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sum over states with n=3, 4, ...constituents

Fixed LF time
Intrinsic heavy quarks    s̄(x) �= s(x)

φM(x, Q0) ∝
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x(1− x)

ψM(x, k2
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µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep→ eπ+n

Pπ/p � 30%

Violation of Gottfried sum rule

ū(x) �= d̄(x)

Does not produce (C = −) J/ψ,Υ

Produces (C = −) J/ψ,Υ

Same IC mechanism explains A2/3

s(x), c(x), b(x) at high x !
Nuclei: Hidden ColorMueller:  gluonic Fock states  >> BFKL 

Pomeron

Coupled. infinite set

Eigensolutions of  the LF Hamiltonian:
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Figure 2: Comparison of the HERMES x(s(x) + s̄(x)) data with the
calculations based on the BHPS model. The solid and dashed curves
are obtained by evolving the BHPS result to Q2 = 2.5 GeV2 using
µ = 0.5 GeV and µ = 0.3 GeV, respectively. The normalizations of
the calculations are adjusted to fit the data at x > 0.1 with statistical
errors only, denoted by solid circles.

their measurement of charged kaon production in SIDIS re-
action [6]. The HERMES data, shown in Fig. 2, exhibits
an intriguing feature. A rapid fall-off of the strange sea
is observed as x increases up to x ∼ 0.1, above which the
data become relatively independent of x. The data suggest
the presence of two different components of the strange
sea, one of which dominates at small x (x < 0.1) and the
other at larger x (x > 0.1). This feature is consistent
with the expectation that the strange-quark sea consists
of both the intrinsic and the extrinsic components hav-
ing dominant contributions at large and small x regions,
respectively. In Fig. 2 we compare the data with calcula-
tions using the BHPS model with ms = 0.5 GeV/c2. The
solid and dashed curves are results of the BHPS model
calculations evolved to Q2 = 2.5 GeV2 using µ = 0.5 GeV
and µ = 0.3 GeV, respectively. The normalizations are
obtained by fitting only data with x > 0.1 (solid circles in
Fig. 2), following the assumption that the extrinsic sea has
negligible contribution relative to the intrinsic sea in the
valence region. Figure 2 shows that the fits to the data are
quite adequate, allowing the extraction of the probability
of the |uudss̄〉 state as

Pss̄
5 = 0.024 (µ = 0.5 GeV);

Pss̄
5 = 0.029 (µ = 0.3 GeV). (4)

We consider next the quantity ū(x) + d̄(x) − s(x) −
s̄(x). Combining the HERMES data on x(s(x)+s̄(x)) with
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Figure 3: Comparison of the x(d̄(x)+ū(x)−s(x)−s̄(x)) data with the
calculations based on the BHPS model. The values of x(s(x)+ s̄(x))
are from the HERMES experiment [6], and those of x(d̄(x) + ū(x))
are obtained from the PDF set CTEQ6.6 [11]. The solid and dashed
curves are obtained by evolving the BHPS result to Q2 = 2.5 GeV2

using µ = 0.5 GeV and µ = 0.3 GeV, respectively. The normalization
of the calculations are adjusted to fit the data.

the x(d̄(x)+ ū(x)) distributions determined by the CTEQ
group (CTEQ6.6) [11], the quantity x(ū(x)+ d̄(x)−s(x)−
s̄(x)) can be obtained and is shown in Fig. 3. This ap-
proach for determining x(ū(x)+ d̄(x)−s(x)− s̄(x)) is iden-
tical to that used by Chen, Cao, and Signal in their recent
study of strange quark sea in the meson-cloud model [12].

An important property of ū + d̄ − s − s̄ is that the
contribution from the extrinsic sea vanishes, just like the
case for d̄− ū. Therefore, this quantity is only sensitive to
the intrinsic sea and can be compared with the calculation
of the intrinsic sea in the BHPS model. We have

ū(x) + d̄(x) − s(x)− s̄(x) =

Puū(xū) + P dd̄(xd̄)− 2P ss̄(xs̄). (5)

We can now compare the x(ū(x) + d̄(x) − s(x) − s̄(x))
data with the calculation using the BHPS model. Since
ū+ d̄−s− s̄ is a flavor non-singlet quantity, we can readily
evolve the BHPS prediction to Q2 = 2.5 GeV2 using µ =
0.5 GeV and the result is shown as the solid curve in Fig. 3.
It is interesting to note that a better fit to the data can
again be obtained with µ = 0.3 GeV, shown as the dashed
curve in Fig. 3.

From the comparison between the data and the BHPS
calculations shown in Figs. 1-3, we can determine the prob-
abilities for the |uuduū〉, |uuddd̄〉, and |uudss̄〉 configura-
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ū(x) + d̄(x) − s(x)− s̄(x) =
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W. C. Chang and  
J.-C. Peng

Intrinsic 
strangeness!

HERMES: Two components to s(x,Q2)!

s(x, Q2) = s(x, Q2)extrinsic + s(x, Q2)intrinsic

arXiv:1105.2381

Extrinsic (DGLAP)  
strangeness!
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Consistent with 

intrinsic charm 

data

QCD: 1
M2

Q
scaling



 

|uudcc̄> Fluctuation in Proton
QCD: Probability ∼Λ

2
QCD

M2
Q

|e+e−�+�− > Fluctuation in Positronium
QED: Probability ∼(meα)4

M4
�

Distribution peaks at equal rapidity (velocity)
Therefore heavy particles carry the largest mo-

mentum fractions

cc̄ in Color Octet

High x charm!

OPE derivation - M.Polyakov et al.

BHPS: Hoyer, Peterson, Sakai, sjb

< xF >= 0.33

Minimize LF energy denominator

x̂i = m⊥i�n
j m⊥j
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Same velocity; heavy constituents carry high-
est momentum fraction
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+κ
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ζ
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dσ
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(pp → HX)[fb]
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πq → γ
∗
q

JLab: Charm at Threshold

Action Principle: Minimum KE, maximal potential 

xQ ∝ (m2
Q + k2

⊥)1/2
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General remarks about orbital angular mo-
mentum
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��i = �b⊥i × �k⊥i

��i = �Li − xi
�R⊥ × �P = �b⊥i × �P

A(σ,∆⊥) = 1
2π

�
dζe

i
2σζM(ζ,∆⊥)

P+, �P⊥

xiP
+, xi

�P⊥+ �k⊥i

ζ = Q2

2p·q

ẑ

�L = �R× �P

�Li = (xi
�R⊥+�b⊥i)× �P

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of Pμ 

10

Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

LFWFs: off invariant mass-shell, infinite # components
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moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

Conserved in each
LF Fock state
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n-1 orbital angular 
momenta

Angular Momentum on the Light-Front

Nonzero Anomalous Moment -->Nonzero orbital angular momentum
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Braun, Gardi

Lepage, sjb
Efremov, Radyushkin

Sachrajda, Frishman Lepage, sjb

φM (x,Q) =
� Q

d2�k ψqq̄(x,�k⊥)
P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

x

1− x

k2
⊥ < Q2

�

i

xi = 1

Lepage, sjb

Hadron Distribution Amplitudes

• Fundamental gauge invariant non-perturbative input to hard 
exclusive processes, heavy hadron decays. Defined for 
Mesons, Baryons

• Evolution Equations from PQCD, OPE

• Conformal Invariance

• Compute from valence light-front wavefunction in light-
cone gauge

12
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zero for q+ = 0

13

Calculation of Form Factors in  Equal-Time Theory

Instant Form

Calculation of Form Factors in  Light-Front Theory

Front Form

Absent for q+ = 0 zero !!

Need vacuum-induced currents

Complete Answer
No vacuum graphs
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14

x,�k⊥ x,�k⊥ + �q⊥

ψ(xi,�k
�
⊥i)ψ(xi,�k⊥i)

p

γ∗

�k�⊥i = �k⊥i + (1− xi)�q⊥struck
�k�⊥i = �k⊥i − xi�q⊥spectators

< p + q|j+(0)|p >= 2p+F (q2)

p + q

�q⊥q+ = 0

q2
⊥ = Q2 = −q2

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Form Factors are 
Overlaps of LFWFs

Interaction 
picture

Drell, Yan; West
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For leptons, such as the electron or neutrino, it is convenient to employ the electron

mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-

current matrix elements in the light-front formalism. In the interaction picture, the

current Jµ
(0) is represented as a bilinear product of free fields, so that it has an

elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can

then be calculated from the expression

F1(q
2
) =

�

a

�
[dx][d

2k⊥]
�

j

ej

�
ψ↑∗

a (xi,k
�
⊥i, λi) ψ↑

a(xi,k⊥i, λi)

�
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2
)

2M
=

�

a

�
[dx][d

2k⊥]
�

j

ej
1

2
× (11)

�
− 1

qL
ψ↑∗

a (xi,k
�
⊥i, λi) ψ↓

a(xi,k⊥i, λi) +
1

qR
ψ↓∗

a (xi,k
�
⊥i, λi) ψ↑

a(xi,k⊥i, λi)

�
,

F3(q2
)

2M
=

�

a

�
[dx][d

2k⊥]
�

j

ej
i

2
× (12)

�
− 1

qL
ψ↑∗

a (xi,k
�
⊥i, λi) ψ↓

a(xi,k⊥i, λi)−
1

qR
ψ↓∗

a (xi,k
�
⊥i, λi) ψ↑

a(xi,k⊥i, λi)

�
.

The summations are over all contributing Fock states a and struck constituent charges

ej. Here, as earlier, we refrain from including the constituents’ color and flavor

dependence in the arguments of the light-front wave functions. The phase-space

integration is

�
[dx] [d

2k⊥] ≡
�

λi,ci,fi

�
n�

i=1

�� �
dxi d

2k⊥i

2(2π)3

��

16π3δ

�

1−
n�

i=1

xi

�

δ(2)

�
n�

i=1

k⊥i

�

, (13)

where n denotes the number of constituents in Fock state a and we sum over the

possible {λi}, {ci}, and {fi} in state a. The arguments of the final-state, light-front

wave function differentiate between the struck and spectator constituents; namely, we

have [13, 15]

k�
⊥j = k⊥j + (1− xj)q⊥ (14)

for the struck constituent j and

k�
⊥i = k⊥i − xiq⊥ (15)

for each spectator i, where i �= j. Note that because of the frame choice q+
= 0, only

diagonal (n�
= n) overlaps of the light-front Fock states appear [14].
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Drell, sjb
A(σ,∆⊥) = 1

2π

�
dζe

i
2σζM(ζ,∆⊥)

P+, �P⊥

xiP
+, xi

�P⊥+ �k⊥i

ζ = Q2

2p·q

x̂, ŷ plane

M2(L) ∝ L

Must have ∆�z = ±1 to have nonzero F2(q2)

-

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
�

x(1− x) b⊥

Nonzero Proton Anomalous Moment -->
Nonzero orbital  quark angular momentum

15

Exact LF Formula for Pauli Form Factor



Light-Front Holography and QCD  Stan BrodskyJLab,  March  12, 2011
16

Calculation of proton form factor in Instant Form 

• Need to boost proton  instant form wavefunction 
from p to p+q:  Extremely complicated dynamical 
problem; particle number changes

• Need to couple to all currents arising from vacuum!  

• Wavefunctions alone do not determine hadronic 
properties!

• Each time-ordered contribution is frame-dependent

• None of these problems occur in the front form!

< p + q|Jµ(0)|p >

p + qp p + qp
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-

graviton

Anomalous gravitomagnetic moment  B(0)

B(0) = 0 Each Fock State

sum over constituents

17

Hwang, Schmidt, Ma, sjb 

Terayev, Okun,  et al:  B(0) Must vanish because of 
Equivalence Theorem 
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T-OddPseudo-

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries

Leading Twist 
Sivers Effect

�Sp ·�q×�pq

 Hwang,  
Schmidt, sjb

Light-Front Wavefunction  
S and P- Waves!

QCD S- and P-
Coulomb Phases

--Wilson Line

“Lensing Effect”

18

i

Collins, Burkardt, Ji, 
Yuan. Pasquini, ...

Leading-Twist 
Rescattering 
Violates pQCD 
Factorization!

Sign reversal in DY!
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8 leading-twist spin-k┴ dependent distribution 
functions 

Courtesy of Aram Kotzinian Together with Lensing

General remarks about orbital angular mo-
mentum

Ψn(xi,�k⊥i, λi)

�n
i=1(xi

�R⊥+�b⊥i) = �R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1
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encode all of the bound state quark and gluon properties of hadrons, including their

momentum, spin and flavor correlations, in the form of universal process- and frame-

independent amplitudes.

The deeply virtual Compton amplitude can be evaluated explicitly by starting from the

Fock state representation for both the incoming and outgoing proton, using the boost

properties of the light-cone wavefunctions, and evaluating the matrix elements of the

currents for a quark target. One can also directly evaluate the non-local current matrix

elements (16) in the same framework. In the following we will concentrate on the

generalized Compton form factors H and E. Formulae analogous to our results can be

obtained for H̃ and Ẽ.

For the n → n diagonal term (∆n = 0), the relevant current matrix element at quark

level is
∫
dy−

8π
eixP+y−/2

〈
1;x ′

1P
′+, $p′

⊥1,λ
′
1

∣∣ψ̄(0)γ +ψ(y)
∣∣1;x1P

+, $p⊥1,λ1
〉∣∣

y+=0,y⊥=0

=
√

x1x
′
1

√
1− ζδ(x − x1)δλ′

1λ1
, (38)

where for definiteness we have labeled the struck quark with the index i = 1. We thus

obtain formulae for the diagonal (parton-number-conserving) contributions to H and E in

the domain ζ ! x ! 1 [17]:
√
1− ζ

1− ζ
2

H(n→n)(x, ζ, t) − ζ 2

4
(
1− ζ

2

)√
1− ζ

E(n→n)(x, ζ, t)

=
(√
1− ζ

)2−n
∑

n,λi

∫ n∏

i=1

dxi d
2$k⊥i

16π3
16π3δ

(

1−
n∑

j=1
xj

)

δ(2)

(
n∑

j=1
$k⊥j

)

× δ(x − x1)ψ
↑∗
(n)

(
x ′
i ,

$k′
⊥i ,λi

)
ψ

↑
(n)

(
xi, $k⊥i ,λi

)
, (39)

1√
1− ζ

∆1 − i∆2

2M
E(n→n)(x, ζ, t)

= (√
1− ζ

)2−n
∑

n,λi

∫ n∏

i=1

dxi d
2$k⊥i

16π3
16π3δ

(

1−
n∑

j=1
xj

)

δ(2)

(
n∑

j=1
$k⊥j

)

× δ(x − x1)ψ
↑∗
(n)

(
x ′
i ,

$k′
⊥i ,λi

)
ψ

↓
(n)

(
xi, $k⊥i ,λi

)
, (40)

where the arguments of the final-state wavefunction are given by

x ′
1 = x1 − ζ

1− ζ
, $k′

⊥1 = $k⊥1 − 1− x1

1− ζ
$∆⊥ for the struck quark,

x ′
i = xi

1− ζ
, $k′

⊥i = $k⊥i + xi

1− ζ
$∆⊥ for the spectators i = 2, . . . , n.

(41)

One easily checks that
∑n

i=1 x ′
i = 1 and

∑n
i=1 $k′

⊥i = $0⊥. In Eqs. (39) and (40) one has to
sum over all possible combinations of helicities λi and over all parton numbers n in the

Fock states. We also imply a sum over all possible ways of numbering the partons in the

n-particle Fock state so that the struck quark has the index i = 1.
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generalized Compton form factors H and E. Formulae analogous to our results can be

obtained for H̃ and Ẽ.

For the n → n diagonal term (∆n = 0), the relevant current matrix element at quark

level is
∫
dy−

8π
eixP+y−/2

〈
1;x ′

1P
′+, $p′

⊥1,λ
′
1

∣∣ψ̄(0)γ +ψ(y)
∣∣1;x1P

+, $p⊥1,λ1
〉∣∣

y+=0,y⊥=0

=
√

x1x
′
1

√
1− ζδ(x − x1)δλ′

1λ1
, (38)

where for definiteness we have labeled the struck quark with the index i = 1. We thus

obtain formulae for the diagonal (parton-number-conserving) contributions to H and E in

the domain ζ ! x ! 1 [17]:
√
1− ζ

1− ζ
2

H(n→n)(x, ζ, t) − ζ 2

4
(
1− ζ

2

)√
1− ζ

E(n→n)(x, ζ, t)

=
(√
1− ζ

)2−n
∑

n,λi

∫ n∏

i=1

dxi d
2$k⊥i

16π3
16π3δ

(

1−
n∑

j=1
xj

)

δ(2)

(
n∑

j=1
$k⊥j

)

× δ(x − x1)ψ
↑∗
(n)

(
x ′
i ,

$k′
⊥i ,λi

)
ψ

↑
(n)

(
xi, $k⊥i ,λi

)
, (39)

1√
1− ζ

∆1 − i∆2

2M
E(n→n)(x, ζ, t)

= (√
1− ζ

)2−n
∑

n,λi

∫ n∏

i=1

dxi d
2$k⊥i

16π3
16π3δ

(

1−
n∑

j=1
xj

)

δ(2)

(
n∑

j=1
$k⊥j

)

× δ(x − x1)ψ
↑∗
(n)

(
x ′
i ,

$k′
⊥i ,λi

)
ψ

↓
(n)

(
xi, $k⊥i ,λi

)
, (40)

where the arguments of the final-state wavefunction are given by

x ′
1 = x1 − ζ

1− ζ
, $k′

⊥1 = $k⊥1 − 1− x1

1− ζ
$∆⊥ for the struck quark,

x ′
i = xi

1− ζ
, $k′

⊥i = $k⊥i + xi

1− ζ
$∆⊥ for the spectators i = 2, . . . , n.

(41)

One easily checks that
∑n

i=1 x ′
i = 1 and

∑n
i=1 $k′

⊥i = $0⊥. In Eqs. (39) and (40) one has to
sum over all possible combinations of helicities λi and over all parton numbers n in the

Fock states. We also imply a sum over all possible ways of numbering the partons in the

n-particle Fock state so that the struck quark has the index i = 1.

Example of LFWF representation of 
GPDs  (n => n)

Diehl, Hwang, sjb
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PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in 
position space

Longitudinal 

Transverse

Light-Front Wavefunctions plus lensing

General remarks about orbital angular mo-
mentum

Ψn(xi,�k⊥i, λi)

�n
i=1(xi

�R⊥+�b⊥i) = �R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1

Frame-Independent Hadron Eigenfunctions 
of the QCD Hamiltonian

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u
Lorce 
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N-1N+1

N N

NN

Light-Front Wave Function Overlap Representation

See also: Diehl, Feldmann, Jakob, Kroll
DGLAP
region

DGLAP
region

ERBL
region

Diehl, Hwang, sjb,  NPB596, 2001
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DVCS/GPD

 Bakker & JI
Lorce
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Verified using LFWFs

Diehl, Hwang, sjb
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J=0 Fixed Pole  Contribution to DVCS

p

γ∗ γ

p�

γ∗ γ

p�
p

• J=0 fixed pole -- direct test of QCD locality -- from seagull or instantaneous 
contribution to Feynman propagator

Szczepaniak, Llanes-Estrada, sjb

Real amplitude, independent of Q2 at fixed t

Close, Gunion, sjb
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Hard Reggeon
 Domain

Deeply Virtual Compton Scattering

p

γ∗

βR(t) ∼ 1
t2

Reflects elementary coupling of two photons to quarks

s >> −t, Q2 >> Λ2
QCD

γ∗p→ γp

p

αR(t)→ 0

T (γ∗(q)p→ γ(k) + p) ∼ � · ��
�

R

sα
R(t)βR(t)

Seagu! interaction
(instantaneous quark 
exchange or Z-graph)

dσ
dt ∼

1
s2

1
t4 ∼

1
s6 at fixed Q2

s , t
s 25
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

Construct helicity amplitude using Light-Front Perturbation 
theory;   coalesce quarks via LFWFs

ψ(x,�k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

e
+

e
−

γ
∗

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

e
+

e
−

γ
∗

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

e
+

e
−

γ
∗

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

τ = x
+

e
+

e
−

Event amplitude 
generator
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Off -Shell  T-Matrix

• Quarks and Gluons Off-Shell

• LFPth:  Minimal Time-Ordering Diagrams-Only positive k+

• Jz Conservation at every vertex 

•  Frame-Independent

• Cluster Decomposition

• “History”-Numerator structure universal

• Renormalization- alternate denominators

• LFWF takes Off-shell to On-shell

• Tested in QED: g-2 to three loops

27

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p
ψ(x,�k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

e
+

e
−

γ
∗

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

e
+

e
−

γ
∗

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

e
+

e
−

γ
∗

Event amplitude generator

Roskies, Suaya, sjb

Chueng Ji, sjb



 

QCD and LF Hadron Wavefunctions

DVCS, GPDs. TMDs

Baryon Decay

Distribution amplitude
ERBL Evolution

Heavy Quark Fock States
Intrinsic Charm

Gluonic properties
DGLAP

Quark & Flavor Struct

Coordinate space 
representation

Quark & Flavor Structure

Baryon Excitations

General remarks about orbital angular mo-
mentum

Ψn(xi,�k⊥i, λi)

�n
i=1(xi

�R⊥+�b⊥i) = �R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1

Initial and Final State 
Rescattering

DDIS, DDIS, T-Odd

Non-Universal Antishadowing

Nuclear Modifications
Baryon Anomaly

Color Transparency

Hard Exclusive Amplitudes
Form Factors

Counting Rules

φp(x1, x2, Q
2)

AdS/QCD
Light-Front Holography

LF Schrodinger Eqn.

LF Overlap, incl ERBL

J=0 Fixed Pole

Orbital Angular Momentum
Spin, Chiral Properties

Crewther Relation

Hadronization at 
Amplitude Level

28

Burkardt, Schmidt, sjb



 

HQED

[− ∆2

2mred
+ Veff(�S,�r)] ψ(�r) = E ψ(�r)

[− 1
2mred

d2

dr2
+

1
2mred

�(� + 1)
r2

+ Veff(r, S, �)] ψ(r) = E ψ(r)

(H0 + Hint) |Ψ >= E |Ψ > Coupled Fock states

Effective two-particle equation

 Spherical Basis r, θ,φ

Coulomb  potential 

Includes Lamb Shift, quantum corrections

Bohr Spectrum
Veff → VC(r) = −α

r

QED atoms: positronium and 
muonium

Semiclassical first approximation to QED 29



 

HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential 

QCD Meson SpectrumH
LF
QCD

(H0
LF + H

I
LF )|Ψ >= M

2|Ψ >

[
�k2
⊥ + m2

x(1− x)
+ V LF

eff ] ψLF (x,�k⊥) = M2 ψLF (x,�k⊥)

ζ,φ

U(ζ, S, L) = κ2ζ2 + κ2(L + S − 1/2)

ζ2 = x(1− x)b2
⊥

Semiclassical first approximation to QCD 
de Teramond, sjb

[− d2

dζ2
+

4L2 − 1
ζ2

+ U(ζ, S, L)] ψLF (ζ) = M2 ψLF (ζ)

30
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Derivation of the Light-Front Radial Schrodinger Equation  directly 
from LF QCD

M2 =
� 1

0
dx

�
d2�k⊥
16π3

�k2
⊥

x(1− x)

���ψ(x,�k⊥)
���
2

+ interactions

=
� 1

0

dx

x(1− x)

�
d2�b⊥ ψ∗(x,�b⊥)

�
−�∇2

�b⊥�

�
ψ(x,�b⊥) + interactions.

(�ζ,ϕ), �ζ =
�

x(1− x)�b⊥:Change 
variables ∇2 =

1
ζ

d

dζ

�
ζ

d

dζ

�
+

1
ζ2

∂2

∂ϕ2

M2 =
�

dζ φ∗(ζ)
�

ζ

�
− d2

dζ2
− 1

ζ

d

dζ
+

L2

ζ2

�
φ(ζ)√

ζ

+
�

dζ φ∗(ζ)U(ζ)φ(ζ)

=
�

dζ φ∗(ζ)
�
− d2

dζ2
+

4L2 − 1
4ζ2

+ U(ζ)
�

φ(ζ)
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Light-Front Holography and Non-Perturbative QCD

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Goal:   
Use AdS/QCD duality to construct 

a first approximation to QCD
Hadron Spectrum  

Light-Front Wavefunctions,
Running coupling in IR

General remarks about orbital angular mo-
mentum

Ψn(xi,�k⊥i, λi)

�n
i=1(xi

�R⊥+�b⊥i) = �R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1

in collaboration with  Guy de Teramond

32

Central problem  for strongly-coupled gauge theories
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1 The Holographic Correspondence

• In the “ semi-classical” approximation to QCD with massless quarks and no quantum loops the β

function is zero, and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds
2 =

R2

z2
(ηµνdx

µ
dx

ν − dz
2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xµ → λxµ
, z → λz, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z → 0 corresponds to the Q→∞, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/ΛQCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ϕ(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 

in collaboration 
with Guy de Teramond

Light-Front 
Holography

• Erlich, Karch, Katz, Son, Stephanov
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AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds
2 =

R2

z2
(ηµνdx

µ
dx

ν − dz
2),

xµ → λxµ, z → λz, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x
2 → λ

2
x

2
, z → λz.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z → 0 correspond to theQ→∞, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 1134

invariant measure
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2 Bosonic Modes

• Conformal metric: ds2 = g�mdx�dxm. x� = (xµ, z), g�m →
�
R2/z2

�
η�m .

• Action for massive scalar modes on AdSd+1:

S[Φ] =
1
2

�
dd+1x

√
g 1

2

�
g�m∂�Φ∂mΦ− µ2Φ2

�
,
√

g → (R/z)d+1.

• Equation of motion
1
√

g

∂

∂x�

�√
g g�m ∂

∂xm
Φ

�
+ µ2Φ = 0.

• Factor out dependence along xµ-coordinates , ΦP (x, z) = e−iP ·x Φ(z), PµPµ =M2 :
�
z2∂2

z − (d− 1)z ∂z + z2M2 − (µR)2
�
Φ(z) = 0.

• Solution: Φ(z)→ z∆ as z → 0,

Φ(x, z) = Cz
d
2 J∆− d

2
(zM) , ∆ = 1

2

�
d +

�
d2 + 4µ2R2

�
.

• Normalization

Rd−1
� Λ−1

QCD

0

dz

zd−1
Φ2

S=0(z) = 1.

Bosonic Solutions:  Hard Wall Model

∆ = 2 + L (µR)2 = L2 − 4d = 4

Φ(z) = Czd/2J∆−d/2(zM)
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AdS Schrodinger Equation for bound state 
of  two scalar constituents:

Derived from variation of Action in AdS5

φ(z = z0 = 1
Λc

) = 0.

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

V(z) = −1−4L2

4z2 + κ4z2

Mµν,Pµ,D,Kµ,

Hard wall model: truncated space

Let Φ(z) = z3/2φ(z)

L = Lz:   light-front orbital angular momentum

�
− d2

dz2
− 1− 4L2

4z2

�
φ(z) =M2φ(z)
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10 2 3 4
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8721A19

Fig: Orbital and radial AdS modes in the hard wall model for ΛQCD = 0.32 GeV .
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ω (782)
ρ (770)π (140)

b1 (1235)

π2 (1670)
a0 (1450)
a2 (1320)
f1 (1285)

f2 (1270)
a1 (1260)

ρ (1700)
ρ3 (1690)

ω3 (1670)
ω (1650)

f4 (2050)
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Fig: Light meson and vector meson orbital spectrum ΛQCD = 0.32 GeV

Exploring QCD, Cambridge, August 20-24, 2007 Page 23

S = 0 S = 1



 
Light-Front Holography and QCD  Stan BrodskyJLab,  March  12, 2011

Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ∼ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ∼ 1/Q.

J(Q, z), Φ(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode Φ(n) dual to an n partonic Fock state |n�. At small z, Φ(n)

scales as Φ(n) ∼ z∆n . Thus:

F (Q2) →
�

1
Q2

�τ−1

,

where τ = ∆n − σn, σn =
�n

i=1 σi. The twist is equal to the number of partons, τ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT and Conformal Invariance

38

Hadron Form Factors from AdS/CFT 

Polchinski, Strassler
de Teramond, sjb

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
�

m2
i + k2

⊥

X = cūd̄ū

F (Q2)I→F =
� dz

z3ΦF (z)J(Q, z)ΦI(z)

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2)→ α
15π

Q2

m2

Q2 << 4m2

A

High Q2 
from 

small z  ~ 1/Q

J(Q, z) Φ(z)

high Q2
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-2 -1.5 -1 -0.5 0
0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0
0

0.2

0.4

0.6

0.8

1

Untitled-1 1

Fπ(q2)

q2(GeV 2
)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ� → ρπ

ρ

π

Spacelike pion form factor from AdS/CFT

Fπ(q2)

q2(GeV 2
)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ� → ρπ

ρ

π

Hard Wall: Truncated Space Confinement

Soft Wall: Harmonic Oscillator Confinement

One parameter -  set by pion decay constant

Data Compilation
Baldini, Kloe and Volmer

de Teramond, sjb
See also: Radyushkin 
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• Nonconformal metric dual to a confining gauge theory

ds2 =
R2

z2
eϕ(z)

�
ηµνdxµdxν − dz2

�

where ϕ(z) → 0 at small z for geometries which are

asymptotically AdS5

• Gravitational potential energy for object of mass m

V = mc2√g00 = mc2R
eϕ(z)/2

z

• Consider warp factor exp(±κ2z2)

• Plus solution: V (z) increases exponentially confining

any object in modified AdS metrics to distances �z� ∼ 1/κ

KITPC, Beijing, October 19, 2010 Page 9
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AdS Soft-Wall Schrodinger Equation for 
bound state  of  two scalar constituents:

Derived from variation of Action : Dilaton-Modified AdS5

U(z) = κ4z2 + 2κ2(L + S − 1)

• de Teramond, sjb

�
− d2

dz2
+

4L2 − 1
4z2

+ U(z)
�
φ(z) =M2φ(z)

Positive-sign dilatonS → SΦ(z) = Se+κ2z2
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Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV .
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Light meson orbital (a) and radial (b) spectrum for κ = 0.6 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 26

S = 0 S = 0

Soft Wall 
Model

Pion mass  
automatically 

zero!

mq = 0

Quark separation 
increases with L

Pion has 
zero mass!
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Bosonic Modes and Meson Spectrum
4κ2

for ∆n = 1
4κ2

for ∆L = 1
2κ2

for ∆S = 1

0

0
6-2010
8796A5

1 2 3 4

2

4

6

M2

L

0-+ 1+- 2-+ 4-+3+-
JPC

n=3

π(1800)
π2(1880)

π2(1670)
π(1300)

π

b(1235)

n=2 n=1 n=0

0
09-2009

8796A1
1 2 3 4

2

4

6

M2

L

1-- 2++ 3-- 4++
JPC

n=3

f2(2300)

f2(1950)

a2(1320)

ρ(1700)

ω(1650)

ρ(1450)
ω(1420)

ρ(770)
ω(782)

f2(1270)

ρ3(1690)
ω3(1670)

a4(2040)
f4(2050)

n=2 n=1 n=0

Regge trajectories for the π (κ = 0.6 GeV) and the I =1 ρ-meson and I =0 ω-meson families (κ = 0.54 GeV)

KITPC, Beijing, October 19, 2010 Page 20

Same slope in n and L

S = 0 S = 1

M2 = 4κ2(n + J/2 + L/2)→ 4κ2(n + L + S/2)
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• Obtain spin-J mode Φµ1···µJ with all indices along 3+1 coordinates from Φ by shifting dimensions

ΦJ(z) =
� z

R

�−J
Φ(z)

• Substituting in the AdS scalar wave equation for Φ
�
z2∂2

z −
�
3−2J − 2κ2z2

�
z ∂z + z2M2− (µR)2

�
ΦJ = 0

• Upon substitution z→ζ

φJ(ζ)∼ζ−3/2+Jeκ2ζ2/2 ΦJ(ζ)

we find the LF wave equation

�
− d2

dζ2
− 1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L + S − 1)

�
φµ1···µJ =M2φµ1···µJ

with (µR)2 = −(2− J)2 + L2

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 18

General-Spin Hadrons



 

0

2

(a) (b)

4

(G
eV

2 )

0 2 4
5-2006
8694A20

ω (782)
ρ (770)

a2 (1320)

f2 (1270)

ρ3 (1690)

ω3 (1670)

f4 (2050)
a4 (2040)

L
0 2 4

n

ρ (770)

ρ (1450)

ρ (1700)

Higher Spin Bosonic Modes SW

• Effective LF Schrödinger wave equation

�
− d2

dζ2
− 1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L+ S−1)

�
φS(ζ) =M2φS(ζ)

with eigenvalues M2 = 2κ2(2n + 2L + S).

• Compare with Nambu string result (rotating flux tube): M2
n(L) = 2πσ (n + L + 1/2) .

Vector mesons orbital (a) and radial (b) spectrum for κ = 0.54 GeV.

• Glueballs in the bottom-up approach: (HW) Boschi-Filho, Braga and Carrion (2005); (SW) Colangelo,

De Facio, Jugeau and Nicotri( 2007).

S = 1

45
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AdS Soft-Wall Schrodinger Equation for 
bound state  of  two constituents:

Derived from variation of Action : Dilaton-Modified AdS5

U(z) = κ4z2 + 2κ2(L + S − 1)

• de Teramond, sjb

eΦ(z) = e+κ2z2
Positive-sign dilaton

Matches the LF QCD Schrodinger Equation !

�
− d2

dz2
+

4L2 − 1
4z2

+ U(z)
�
φ(z) =M2φ(z)

[− d2

dζ2
+

4L2 − 1
ζ2

+ U(ζ, S, L)] ψLF (ζ) =M2 ψLF (ζ)
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ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)                AdS5
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Light Front Holography: Identical mapping derived from equality of    
LF (DYW) and AdS  formulas for current matrix elements

ψ(x, ζ) =
�

x(1− x)ζ−1/2φ(ζ)

de Teramond, sjb
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soft wall
confining potential:

Light-Front Holography: 
Map AdS/CFT  to  3+1 LF Theory

�
− d2

d2ζ
+ V (ζ)

�
=M2φ(ζ)

�
− d2

dζ2 + V (ζ)
�
=M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

Jz = Sz
p =

�n
i=1 Sz

i +
�n−1

i=1 �z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF radial equation

G. de Teramond, sjb 

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

Frame Independent

48

U(ζ) = κ4ζ2 + 2κ2(L + S − 1)

[− d2

dζ2
+

4L2 − 1
ζ2

+ U(ζ, S, L)] ψLF (ζ) = M2 ψLF (ζ)
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• Hadronic gravitational form-factor in AdS space

Aπ(Q2) = R
3
�

dz

z3
H(Q2

, z) |Φπ(z)|2 ,

where H(Q2
, z) = 1

2Q
2
z
2
K2(zQ)

• Use integral representation for H(Q2
, z)

H(Q2
, z) = 2

� 1

0
x dxJ0

�
zQ

�
1− x

x

�

• Write the AdS gravitational form-factor as

Aπ(Q2) = 2R
3
� 1

0
x dx

�
dz

z3
J0

�
zQ

�
1− x

x

�
|Φπ(z)|2

• Compare with gravitational form-factor in light-front QCD for arbitrary Q

���ψ̃qq/π(x, ζ)
���
2

=
R

3

2π
x(1− x)

|Φπ(ζ)|2

ζ4
,

which is identical to the result obtained from the EM form-factor

From String to Things, INT, Seattle, April 10, 2008 Page 31

Abidin & Carlson 

Gravitational Form Factor in AdS space

Identical  to LF Holography obtained from electromagnetic current
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soft wall
confining potential:

Light-Front Holography: 
Map AdS/CFT  to  3+1 LF Theory

�
− d2

d2ζ
+ V (ζ)

�
=M2φ(ζ)

�
− d2

dζ2 + V (ζ)
�
=M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

Jz = Sz
p =

�n
i=1 Sz

i +
�n−1

i=1 �z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF radial equation

G. de Teramond, sjb 

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

Frame Independent
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U(ζ) = κ4ζ2 + 2κ2(L + S − 1)

[− d2

dζ2
+

4L2 − 1
ζ2

+ U(ζ, S, L)] ψLF (ζ) =M2 ψLF (ζ)
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Current Matrix Elements in AdS Space (SW)

• Propagation of external current inside AdS space described by the AdS wave equation
�
z2∂2

z − z
�
1 + 2κ2z2

�
∂z −Q2z2

�
Jκ(Q, z) = 0.

• Solution bulk-to-boundary propagator

Jκ(Q, z) = Γ
�

1 +
Q2

4κ2

�
U

�
Q2

4κ2
, 0, κ2z2

�
,

where U(a, b, c) is the confluent hypergeometric function

Γ(a)U(a, b, z) =
� ∞

0
e−ztta−1(1 + t)b−a−1dt.

• Form factor in presence of the dilaton background ϕ = κ2z2

F (Q2) = R3
�

dz

z3
e−κ2z2

Φ(z)Jκ(Q, z)Φ(z).

• For large Q2 � 4κ2

Jκ(Q, z)→ zQK1(zQ) = J(Q, z),

the external current decouples from the dilaton field.

Exploring QCD, Cambridge, August 20-24, 2007 Page 34

sjb and GdT 
Grigoryan and Radyushkin

Soft Wall 
Model
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e+

e−
γ∗

π+

π−

Dressed soft-wall current brings in higher 
Fock states and more vector meson poles

53
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13

for the elastic proton Dirac form factor and

F p
1 N→N∗(Q

2
) =

√
2

3

Q2

M2
ρ�

1 +
Q2

M2
ρ

��
1 +

Q2

M2
ρ�

��
1 +

Q2

M2

ρ
��

� , (29)

for the EM spin non-flip proton to Roper transition form factor. [59] The results (28) and (29), compared

with available data in Fig. 4, correspond to the valence approximation. The transition form factor (29)

is expressed in terms of the mass of the ρ vector meson and its first two radial excited states, with no

additional parameters.

7 Higher Fock Components in Light Front Holography

The LF Hamiltonian eigenvalue equation (1) is a matrix in Fock space which represents an infinite

number of coupled integral equations for the Fock components ψn = �n|ψ�. The resulting potential in

quantum field theory can be considered as an instantaneous four-point effective interaction in LF time,

similar to the instantaneous gluon exchange in the light-cone gauge A+
= 0, which leads to qq → qq,

qq → qq, q → qqq and q → qqq, thus creating Fock states with any number of extra quark-antiquark

pairs. In this approximation there is no mixing with the qqg Fock states (no dynamical gluons) from

the interaction term gsψγ · Aψ in QCD. Since models based on AdS/QCD are particularly successful

in the description of exclusive processes, [62] this may explain the dominance of quark interchange [63]

over quark annihilation or gluon exchange contributions in large angle elastic scattering. [64]

To show the relevance of higher Fock states we discuss a simple semi-phenomenological model of

the elastic form factor of the pion where we include the first two components in a Fock expansion of

the pion wave function |π� = ψqq/π|qq�τ=2 + ψqqqq|qqqq�τ=4 + · · · , where the JPC
= 0

−+
twist-two

and twist-4 states |qq� and |qqqq� are created by the interpolating operators qγ+γ5q and qγ+γ5qqq
respectively.
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Fig. 5 Structure of the space- and time-like pion form factor in light-front holography for a truncation of the
pion wave function up to twist four. Triangles are the data compilation from Baldini et al., [42] red squares
are JLAB 1 [43] and green squares are JLAB 2. [44]

It is apparent from (19) that the higher-twist components in the Fock expansion are relevant for

the computation of hadronic form factors, particularly for the time-like region which is particularly

sensitive to the detailed structure of the amplitudes. [65] Since the charge form factor is a diagonal

operator, the final expression for the form factor corresponding to the truncation up to twist four

is the sum of two terms, a monopole and a three-pole term. In the strongly coupled semiclassical
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quantum field theory can be considered as an instantaneous four-point effective interaction in LF time,

similar to the instantaneous gluon exchange in the light-cone gauge A+
= 0, which leads to qq → qq,

qq → qq, q → qqq and q → qqq, thus creating Fock states with any number of extra quark-antiquark

pairs. In this approximation there is no mixing with the qqg Fock states (no dynamical gluons) from

the interaction term gsψγ · Aψ in QCD. Since models based on AdS/QCD are particularly successful

in the description of exclusive processes, [62] this may explain the dominance of quark interchange [63]

over quark annihilation or gluon exchange contributions in large angle elastic scattering. [64]

To show the relevance of higher Fock states we discuss a simple semi-phenomenological model of

the elastic form factor of the pion where we include the first two components in a Fock expansion of
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ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

• Light-Front Holography

General remarks about orbital angular mo-
mentum

Ψn(xi,�k⊥i, λi)

�n
i=1(xi

�R⊥+�b⊥i) = �R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1

0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

ψ(x, k⊥)(GeV)

ψ(x, k⊥)

• Light Front Wavefunctions:                                   

Schrödinger Wavefunctions

of Hadron Physics
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Prediction from AdS/CFT: Meson LFWF

ψ(x, k⊥)
0.20.40.60.8
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1.4

1.5
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0.2
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5

       “Soft Wall” 
model

ψ(x, k⊥)(GeV)

de Teramond, sjb
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φM(x, Q0) ∝
�

x(1− x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

φM(x, Q0) ∝
�

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

κ = 0.375 GeV

massless quarks
Note coupling 

k2
⊥, x

Connection of Confinement to TMDs

ψM (x, k⊥) =
4π

κ
�

x(1− x)
e
− k2

⊥
2κ2x(1−x)
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Second Moment of  Pion Distribution Amplitude

< ξ2 >=
� 1

−1
dξ ξ2φ(ξ)

ξ = 1− 2x

φasympt ∝ x(1− x)
φAdS/QCD ∝

�
x(1− x)

Braun et al.

Donnellan et al.

< ξ2 >π= 1/5 = 0.20

< ξ2 >π= 1/4 = 0.25

Lattice (I) < ξ2 >π= 0.28± 0.03

Lattice (II) < ξ2 >π= 0.269± 0.039
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Kepler Center for Astro and Particle Physics,

Auf der Morgenstelle 14, D–72076 Tübingen, Germany
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The nucleon helicity-independent generalized parton distributions (GPDs) of quarks are calculated

in the zero skewness case, in the framework of the AdS/QCD model. The present approach is based

on a matching procedure of sum rules relating the electromagnetic form factors to GPDs and AdS

modes.

PACS numbers: 11.10.Kk,12.38.Lg,13.40.Gp,14.20.Dh

Keywords: nucleon form factors and generalized parton distributions, AdS/CFT correspondence, holograph-

ical model

I. INTRODUCTION

One of the main goals in strong interaction theory is
to understand how nucleons and other hadrons are build
up from quarks and gluons. Studied in various scattering
processes, the hadronic structure can be encoded in the
so-called generalized parton distributions (GPDs) [1–4].
In particular, at leading twist-2, there exist two kinds
of helicity-independent GPDs of quarks in the nucleon,
denoted asHq(x, ξ, t) and E

q(x, ξ, t). Both quantities de-
pend in general on three variables: the momentum trans-
fer squared t = q

2, the light-cone momentum fraction x,
and the skewness ξ.

Due to their nonperturbative nature the GPDs can-
not be directly calculated from Quantum Chromodynam-
ics (QCD). There are essentially three ways to access
the GPDs (for reviews see e.g. [5, 6]): extraction from
the experimental measurement of hard processes, a di-
rect calculation in the context of lattice QCD, and dif-
ferent phenomenological models and methods. The last
procedure is based on a parametrization of the quark
wave functions/GPDs using constraints imposed by sum
rules [2, 3], which relate the parton distributions to nu-
cleon electromagnetic form factors (some examples of this
procedure can be found e.g. in [7–9]). On the other hand,
such sum rules can also be used in the other direction –
GPDs are extracted by calculating nucleon electromag-
netic form factors in some approach.

Following the last idea, here we show how to extract
the quark GPDs of the nucleon in the framework of a
holographical soft-wall model [10, 11]. In particular, we
use the results of Abidin and Carlson for the nucleon form

∗On leave of absence from Department of Physics, Tomsk State

University, 634050 Tomsk, Russia

factors [11] in order to extract the GPDs using the light-
front mapping – the key ingredient of light-front hologra-
phy (LFH). This is an approach based on the correspon-
dence of string theory in Anti-de Sitter (AdS) space and
conformal field theory (CFT) in physical space-time [12].
LFH is further based on a mapping of string modes in
the AdS fifth dimension to hadron light-front wave func-
tions in physical space-time, as suggested and developed
by Brodsky and de Téramond [10, 13–16] and extended
in [17–19]. In this paper we show how LFH can be used
to get the nucleon GPDs in the context of the soft-wall
model.
From the beginning the AdS/CFT [12] correspondence

has received considerable attention, which over time was
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Notice that the GPDs in impact space can be derived di-
rectly from the nucleon form factors using the procedure
of light-front mapping and the bulk-to-boundary propa-
gator in impact space V (b⊥, z). The latter is related to
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From Nick Evans

• Action for Dirac field in AdSd+1 in presence of dilaton background ϕ(z) [Abidin and Carlson (2009)]

S =
�

dd+1√geϕ(z)
�
iΨeM

A ΓADMΨ + h.c + ϕ(z)ΨΨ− µΨΨ
�

• Factor out plane waves along 3+1: ΨP (xµ, z) = e−iP ·xΨ(z)
�
i
�
zη�mΓ�∂m + 2Γz

�
+ µR + κ2z

�
Ψ(x�) = 0.

• Solution (ν = µR− 1
2 , ν = L + 1)

Ψ+(z) ∼ z
5
2+νe−κ2z2/2Lν

n(κ2z2), Ψ−(z) ∼ z
7
2+νe−κ2z2/2Lν+1

n (κ2z2)

• Eigenvalues (how to fix the overall energy scale, see arXiv:1001.5193)

M2 = 4κ2(n + L + 1)

• Obtain spin-J mode Φµ1···µJ−1/2
, J > 1

2 , with all indices along 3+1 from Ψ by shifting dimensions

• Large NC : M2 = 4κ2(NC + n + L− 2) =⇒ M ∼
√

NC ΛQCD

Escuela de Fı́sica, UCR, December 1, 2010 Page 25

GdT and sjb, PRL 94, 201601 (2005)

positive parity

Yukawa interaction 
in 5 dimensions 
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φ(z) = eκ2z2
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Non-Conformal Extension of Algebraic Structure (Soft Wall Model)

• We write the Dirac equation

(αΠ(ζ)−M)ψ(ζ) = 0,

in terms of the matrix-valued operator Π

Πν(ζ) = −i

�
d

dζ
−

ν + 1
2

ζ
γ5 − κ2ζγ5

�
,

and its adjoint Π†, with commutation relations

�
Πν(ζ),Π†

ν(ζ)
�

=
�

2ν + 1
ζ2

− 2κ2

�
γ5.

• Solutions to the Dirac equation

ψ+(ζ) ∼ z
1
2+νe−κ2ζ2/2Lν

n(κ2ζ2),

ψ−(ζ) ∼ z
3
2+νe−κ2ζ2/2Lν+1

n (κ2ζ2).

• Eigenvalues

M2 = 4κ2(n + ν + 1).

Exploring QCD, Cambridge, August 20-24, 2007 Page 49

ν = L + 1

Soft Wall
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Glazek and Schaden [Phys. Lett. B 198, 42 (1987)]: (ωB/ωM )2 = 5/8 4κ2 for ∆n = 1
4κ2 for ∆L = 1

2κ2 for ∆S = 1

M2

L

Parent and daughter 56 Regge trajectories for the N and ∆ baryon families for κ = 0.5 GeV

2009 JLab Users Group Meeting, June 8, 2009 Page 2662

• ∆ spectrum identical to Forkel and Klempt, Phys. Lett. B 679, 77 (2009)

Same multiplicity of states for mesons and baryons!
4κ2 for ∆n = 1
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Fig. 2. Regge trajectory for ∆∗ resonances as a function of the leading intrinsic orbital angular momentum L and the radial
excitation quantum number N (corresponding to n1 + n2 in quark models). The line represents a prediction of the metric-soft-
wall AdS/QCD model [18,19]. Resonances with N = 0 and N = 1 are listed above or below the trajectory. The mass predictions
are 1.27, 1.64, 1.92, 2.20, 2.43, 2.64, 2.84GeV. The two states reported in [20,21] are indicated by arrows.

In [17], ∆(1930)D35 was interpreted as L = 3, S = 1/2

excitation. The new evidence for ∆(1940)D33 – which

seems to be a natural spin partner of ∆(1930)D35 – sug-

gests L = 1, S = 3/2, N = 1 quantum numbers for both,

and the two-star ∆(1900)S31 to be the natural third part-

ner to complete a spin triplet. In the interpretation of

[17], one could of course also argue that ∆(1900)S31 and

∆(1940)D33 have L = 1, S = 1/2, N = 1, and ∆(1930)D35

and a missing ∆G37 below 2GeV are L = 3, S = 1/2 ex-

citations.

At high masses, some problems remain. In particular

∆(2750)I3 13 is far from the solid line.

In conclusion, there are clear discrepancies between

hard-wall AdS/QCD and data in the 1.7 GeV region. Above

1.8GeV, some inconsistencies with the hard wall solution

exist, in particular the existence of ∆(1940)D33 [20,21]

and the non-observation of a ∆G37 candidate with mass

between 1.9 and 2GeV are difficult to reconcile with hard-

wall AdS/QCD. But overall, the trend of most established

states is reasonably reproduced.

In [18,19], the mass spectrum of light mesons and

baryons was predicted using AdS/QCD in the metric soft-

wall approximation. Relations between ground state masses

and trajectory slopes

M2
= 4λ2

(L + N + 1/2) for mesons

M2
= 4λ2

(L + N + 3/2) for baryons (A)

were derived. Using the slope of the ∆ trajectory, masses

were calculated. They are plotted as a function of L+N in

Fig. 2. The two states indicated by arrows are those found

in [20,21]. While the positive-parity ∆(1920)P33 has three

stars in the PDG rating, the negative-parity ∆(1940)D33

had one star only. Both states were not observed in the

latest analysis of Arndt et al. [3] on elastic πN scattering.

The four positive- and negative-parity states between

1.60 and 1.75 GeV (2,3) are predicted to have the same

mass (1.62 GeV)
1
; the seven states (4,5) should have 1.92

GeV. The predicted masses for L + N = 3 (6,7) and 4

(8,9) are 2.20 and 2.42GeV, respectively. The trajectory

continues with the calculated masses 2.64 for L + N = 5

and 2.84 GeV for L + N = 6. Experimentally, the highest

mass state is ∆(2950)K3 15 which requires L = 6. In this

interpretation, ∆(2750)I3 13 has L = 5, S = 3/2 and N =

1 and should be degenerate in mass with ∆(2950)K3 15.

Both are expected to have a mass of 2.84 GeV which is not

incompatible with the experimental findings even though

the mass difference of 200 MeV between the two states

does not support their expected mass degeneracy.

An early interpretation of strings was proposed by

Nambu [36]. He assumed that the gluon flux between the

two quarks is concentrated in a rotating flux tube or a

rotating string with a homogeneous mass density. Nambu

derived a linear relation between squared mass and or-

bital angular momentum, M2 ∝ L. This mechanical pic-

ture was further developed by Baker and Steinke [37] and

by Baker [38] to a field theoretical approach. For mesons,

the functional dependence (A) was derived.

The relation (A) between ∆∗
masses and L and N has

been derived earlier in a phenomenological analysis of the

baryon mass spectrum [35]. For octet and singlet baryons,

one term ascribed to instanton-induced interactions was

required to reproduce the full mass spectrum of all baryon

resonances having known spin and parity.

The striking agreement between the measured baryon

excitation spectrum and the predictions [18,19] based on

AdS/QCD and the success of the phenomenological mass

formula [35] pose new questions. In both cases, the baryon

masses depend on the number of orbital and radial exci-

tations just as mesons. But baryons have an extra degree

1 The ∆1/2+(1750) is tricky; it has L = 2 but both oscillators
are excited. Since they are orthogonal, the internal separations
increase less than for parallel angular momenta.
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gests L = 1, S = 3/2, N = 1 quantum numbers for both,
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[17], one could of course also argue that ∆(1900)S31 and

∆(1940)D33 have L = 1, S = 1/2, N = 1, and ∆(1930)D35

and a missing ∆G37 below 2GeV are L = 3, S = 1/2 ex-

citations.

At high masses, some problems remain. In particular

∆(2750)I3 13 is far from the solid line.

In conclusion, there are clear discrepancies between

hard-wall AdS/QCD and data in the 1.7 GeV region. Above

1.8GeV, some inconsistencies with the hard wall solution

exist, in particular the existence of ∆(1940)D33 [20,21]

and the non-observation of a ∆G37 candidate with mass

between 1.9 and 2GeV are difficult to reconcile with hard-
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1 and should be degenerate in mass with ∆(2950)K3 15.

Both are expected to have a mass of 2.84 GeV which is not

incompatible with the experimental findings even though

the mass difference of 200 MeV between the two states

does not support their expected mass degeneracy.

An early interpretation of strings was proposed by

Nambu [36]. He assumed that the gluon flux between the
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derived a linear relation between squared mass and or-
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ture was further developed by Baker and Steinke [37] and

by Baker [38] to a field theoretical approach. For mesons,
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The relation (A) between ∆∗
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been derived earlier in a phenomenological analysis of the

baryon mass spectrum [35]. For octet and singlet baryons,

one term ascribed to instanton-induced interactions was

required to reproduce the full mass spectrum of all baryon

resonances having known spin and parity.

The striking agreement between the measured baryon

excitation spectrum and the predictions [18,19] based on

AdS/QCD and the success of the phenomenological mass

formula [35] pose new questions. In both cases, the baryon

masses depend on the number of orbital and radial exci-

tations just as mesons. But baryons have an extra degree
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Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

ψ+(ζ)n,L = κ2+L

�
2n!

(n + L)!
ζ3/2+Le−κ2ζ2/2LL+1

n

�
κ2ζ2

�

ψ−(ζ)n,L = κ3+L 1√
n + L + 2

�
2n!

(n + L)!
ζ5/2+Le−κ2ζ2/2LL+2

n

�
κ2ζ2

�

• Normalization �
dζ ψ2

+(ζ) =
�

dζ ψ2
−(ζ) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4κ2 (n + L + 1)

• “Chiral partners”

MN(1535)

MN(940)
=
√

2

LC 2011 2011, Dallas, May 23, 2011 Page 13
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Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

�
dζ J(Q, ζ)|ψ+(ζ)|2,

F−(Q2) = g−

�
dζ J(Q, ζ)|ψ−(ζ)|2,

where the effective charges g+ and g− are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ψ+(ζ) and ψ−(ζ) correspond

to nucleons with Jz = +1/2 and−1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

�
dζ J(Q, ζ)|ψ+(ζ)|2,

Fn
1 (Q2) = −1

3

�
dζ J(Q, ζ)

�
|ψ+(ζ)|2 − |ψ−(ζ)|2

�
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52
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in chiral perturbation theory
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Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)→ N∗(1440): Ψn=0,L=0
+ → Ψn=1,L=0

+

• Transition form factor

F1
p
N→N∗(Q2) = R4

�
dz

z4
Ψn=1,L=0

+ (z)V (Q, z)Ψn=0,L=0
+ (z)

• Orthonormality of Laguerre functions

�
F1

p
N→N∗(0) = 0, V (Q = 0, z) = 1

�

R4
�

dz

z4
Ψn�,L

+ (z)Ψn,L
+ (z) = δn,n�

• Find

F1
p
N→N∗(Q2) =

2
√

2
3

Q2

M2
P�

1 + Q2

M2
ρ

��
1 + Q2

M2
ρ�

��
1 + Q2

M2

ρ
��

�

withMρ
2
n → 4κ2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 21

de Teramond, sjb

Consistent with counting rule, twist 3
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Data from I. Aznauryan, et al. CLAS (2009)

IUSS, Ferrara, May 27, 2011 Page 31
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Figure 2: Dirac proton form factors in light-front holographic QCD. Left: scaling of
proton elastic form factor Q4F p

1 (Q
2). Right: proton transition form factor F p

1 N→N∗(Q2)
to the first radial excited state. Data compilation from Diehl [32] (left) and JLAB [33]
(right).

transverse LF plane (µR)2 = −(2− J)2 + L2, L = |Lz|, [11] and thus a conserved EM
current corresponds to poles along the J = L = 1 radial trajectory. For the twist-3
computation of the space-like form factor, which involves the current J+, the poles do
not correspond to the physical poles of the twist-2 transverse current J⊥ present in the
annihilation channel, namely the J = 1, L = 0 radial trajectory. Consequently, the
location of the poles in the final result should be shifted to their physical positions.
When this is done, the results agree extremely well with the proton Dirac elastic and
transition form factor data shown in Fig. (2).

The proton has degenerate mass eigenstates with plus and minus components (2)
corresponding to Lz = 0 and Lz = +1 orbital components combined with spin com-
ponents Sz = +1/2 and Sz = −1/2 respectively. Likewise, we would expect that the
wave equation describing the propagation of a vector meson in AdS with Jz = +1
will account for three degenerate mass eigenstates with different LF orbital angular
momentum components: Lz = 0, Sz = +1; Lz = +1, Sz = 0 and Lz = +2, Sz = −1,
which is obviously not the case in the usual formulation of AdS wave equations. To
describe higher spin modes in AdS/QCD, properly incorporating the spin constituents,
the formalism has to be extended to account for multiple component wave equations
with degenerate mass eigenstates – as for the case of the nucleon – introducing cou-
pled linear equations in AdS similar to the Kemmer-Duffin-Petiau equations, a subject
worth pursuing.

6

Nucleon Elastic  and Transition Form Factors

3.1 Computing Nucleon Form Factors in Holographic QCD

In order to compute the separate features of the proton an neutron form factors one
needs to incorporate the spin-flavor structure of the nucleons, properties which are
absent in the usual models of the gauge/gravity correspondence. This can be readily
included in AdS/QCD by weighting the different Fock-state components by the charges
and spin-projections of the quark constituents; e.g., as given by the SU(6) spin-flavor
symmetry.

To simplify the discussion we shall consider the spin-non flip proton form factors
for the transition n, L → n′L. Using the SU(6) spin-flavor symmetry we obtain the
result [14]

F p
1 n,l→n′,L(Q

2) = R4

∫

dz

z4
Ψn′, L

+ (z)V (Q, z)Ψn,L
+ (z), (6)

where we have factored out the plane wave dependence of the AdS fields

Ψ+(z) =
κ2+L

R2

√

2n!

(n + L+ 1)!
z7/2+LLL+1

n

(

κ2z2
)

e−κ2z2/2. (7)

The bulk-to-boundary propagator is [34]

V (Q, z) = κ2z2
∫ 1

0

dx

(1− x)2
x

Q2

4κ2 e−κ2z2x/(1−x), (8)

with V (Q = 0, z) = V (Q, z = 0) = 1. The orthonormality of the Laguerre polynomials
in (7) implies that the nucleon form factor at Q2 = 0 is one if n = n′ and zero otherwise.
Using (8) in (6) we find

F p
1 (Q

2) =
1

(

1 + Q2

M2
ρ

)(

1 + Q2

M2
ρ′

) , (9)

for the elastic proton Dirac form factor and

F p
1 N→N∗(Q2) =

√
2

3

Q2

M2
ρ

(

1 + Q2

M2
ρ

)(

1 + Q2

M2
ρ′

)(

1 + Q2

M2

ρ
′′

) , (10)

for the EM spin non-flip proton to Roper transition form factor. The results (9) and
(10), compared with available data in Fig. 2, correspond to the valence approximation.
The transition form factor (10) is expressed in terms of the mass of the ρ vector meson
and its first two radial excited states, with no additional parameters.

To study the spin-flip nucleon form factors using holographic methods, Abidin and
Carlson [35] propose to introduce the ‘anomalous’ gauge invariant term

∫

d4x dz
√
g Ψ̄ eAM eBN [ΓA,ΓB]F

MNΨ (11)
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Negative Dilaton Background exp (−κ2z2)

Form Factor in negative dilaton background:

[SJB and GdT, PRD 77, 056007(2008)]
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�
· · ·
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which is expressed as a N −1 product of poles, corresponding to the first N −1 states along

the vector meson radial trajectory.

Mass spectrum of radial excitations:
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Form Factors in AdS/QCD

Constituent Counting



• Boost Invariant

• Trivial LF vacuum.

• Massless Pion

• Hadron Eigenstates have LF Fock components of different Lz

• Proton: equal probability

• Self-Dual Massive Eigenstates: Proton is its own chiral partner.

• Label State by minimum L as in Atomic Physics

• Minimum L dominates at short distances               

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.

Chiral Features of Soft-Wall 
AdS/QCD Model

74

Sz = +1/2, Lz = 0;Sz = −1/2, Lz = +1

Jz = +1/2 :< Lz >= 1/2, < Sz
q = 0 >

Proton spin 
carried by quark angular momentum!



 

5 Non-Perturbative QCD Coupling From LF Holography

With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ϕ(z) = κ2z2

S = −1
4

�
d4x dz

√
g eϕ(z) 1

g2
5

G2

• Flow equation

1
g2
5(z)

= eϕ(z) 1
g2
5(0)

or g2
5(z) = e−κ2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling αs(ζ) = g2
Y M (ζ)/4π is the five dim coupling up to a factor: g5(z)→ gY M (ζ)

• Coupling measured at momentum scale Q

αAdS
s (Q) ∼

� ∞

0
ζdζJ0(ζQ)αAdS

s (ζ)

• Solution

αAdS
s (Q2) = αAdS

s (0) e−Q2/4κ2
.

where the coupling αAdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb
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Nearly conformal QCD?

42

Γp−n
1 ≡

� 1

0
dx

�
gp

1 (x, Q2)− gn
1 (x, Q2)

�
=

1
6

gA

�
1−

αs,g1

π

�Define αs from 
Björkén sum,
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JLab data from 
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Deur, de Teramond, sjb 76



 

Running Coupling from Light-Front Holography and AdS/QCD

αAdS
s (Q)/π = e−Q2/4κ2

αs(Q)
π

Deur,  de Teramond, sjb

κ = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point
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Deur, Korsch, et al.
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Fig: Infrared conformal window ( from Deur et al., arXiv:0803.4119 )

From String to Things, INT, Seattle, April 10, 2008 Page 8

DSE  gluon  
couplings
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Sublimated Gluons

• AdS/QCD soft-wall model has confining potential . 
Gluon exchange absent.

• Coupling falls exponentially -- misses asymptotic 
freedom at large Q2

• Interpretation: Gluons sublimated into potential 
below 1 GeV2 virtuality

• Higher Fock states with extra quark-antiquark pairs, 
no gluons

79



Light-Front Holography and QCD  Stan BrodskyJLab,  March  12, 2011

• Exposed by timelike form factor through dressed 
current.

• Created by confining interaction

• Similar to QCD(1+1) in lcg

Higher Fock States

80

U(ζ2)

5 Confinement Interaction and Higher Fock States

[S. J. Brodsky and GdT (in progress)]

• Is the AdS/QCD confinement interaction responsible for quark pair creation?

• Only interaction in AdS/QCD is the confinement potential

• In QFT the resulting LF interaction is a 4-point effective interaction wich leads to qq → qq, q → qqq,

qq → qq and q → qqq

• Create Fock states with extra quark-antiquark pairs.

• No mixing with qqg Fock states (no dynamical gluons)

• Explain the dominance of quark interchange in large angle elastic scattering

[C. White et al. Phys. Rev D 49, 58 (1994)

• Effective confining potential can be considered as an instantaneous four-point interaction in LF time,

similar to the instantaneous gluon exchange in LC gauge A+ = 0. For example

P−confinement � κ4
�

dx−d2�x⊥
ψγ+T aψ

P+

1
(∂/∂⊥)4

ψγ+T aψ

P+

LC 2011 2011, Dallas, May 23, 2011 Page 23
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Meson Transition Form-Factors

[S. J. Brodsky, Fu-Guang Cao and GdT, arXiv:1005.39XX]

• Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]

�
d4x

�
dz �LMNPQAL∂MAN∂P AQ

∼ (2π)4δ(4) (pπ + q − k) Fπγ(q2)�µνρσ�µ(q)(pπ)ν�ρ(k)qσ

• Take Az ∝ Φπ(z)/z, Φπ(z) =
�

2Pqq κ z2e−κ2z2/2
, �Φπ|Φπ� = Pqq

• Find

�
φ(x) =

√
3fπx(1− x), fπ =

�
Pqq κ/

√
2π

�

Q2Fπγ(Q2) =
4√
3

� 1

0
dx

φ(x)
1− x

�
1− e−PqqQ2(1−x)/4π2f2

π x
�

normalized to the asymptotic DA [Pqq = 1 → Musatov and Radyushkin (1997)]

• Large Q2
TFF is identical to first principles asymptotic QCD result Q2Fπγ(Q2 →∞) = 2fπ

• The CS form is local in AdS space and projects out only the asymptotic form of the pion DA

LC 2011 2011, Dallas, May 23, 2011 Page 25

G.P. Lepage, sjb
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Photon-to-pion transition form factor

F.-G. Cao, 
G. de Teramond, 

sjb

where α = 1/137. The form factor Fπγ(0) is also well described by the Schwinger, Adler,

Bell and Jackiw anomaly [31] which gives

F SABJ
πγ (0) =

1

4π2fπ
, (16)

in agreement within a few percent of the observed value obtained from the the decay

π0 → γγ.

Taking Pqq̄ = 0.5 in (14) one obtains a result in agreement with (16). Thus (13) repre-

sents a description on the pion TFF which encompasses the low-energy non-perturbative

and the high-energy hard domains, but includes only the asymptotic DA of the qq̄ com-

ponent of the pion wave function at all scales. The results from (13) are shown as dotted

curves in Figs. 1 and 2 for Q2Fπγ(Q2) and Fπγ(Q2) respectively. The calculations agree

reasonably well with the experimental data at low- and medium-Q2 regions (Q2 < 10

GeV2) , but disagree with BABAR’s large Q2 data.
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pion-gamma transition form factor, Q2Fpigamma 
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 Free current; Twist 2 

 Dressed current; Twist 2 

 Dressed current; Twist 2+4 

FIG. 1: The γγ∗ → π0 transition form factor shown as Q2Fπγ(Q2) as a function of Q2 = −q2.

The dotted curve is the asymptotic result predicted by the Chern-Simons form. The dashed

and solid curves include the effects of using a confined EM current for twist-two and twist-two

plus twist-four respectively. The data are from [15, 18, 19].

9

qq̄ components.

The simple valence qq̄ model discussed above should thus be modified at small Q2

by introducing the dressed current. In the case of soft-wall potential, the EM bulk-to-

boundary propagator is

V (Q2, z) = Γ

�
1 +

Q2

4κ2

�
U

�
Q2

4κ2
, 0, κ2z2

�
, (17)

where U(a, b, c) is the Tricomi confluent hypergeometric function. The modified current

V (Q2, z), (17), has the same boundary conditions as the free current (9), and reduces to

(9) in the limit Q2 → ∞. Eq. (17) can be conveniently written in terms of the integral

representation [33]

V (Q2, z) = κ2z2

� 1

0

dx

(1− x)2
x

Q2

4κ2 e−κ2z2x/(1−x). (18)

Inserting the pion wave function (5) for twist τ = 2 and the confined EM current (18)

in the amplitude (3) one finds

Fπγ(Q
2
) =

Pqq̄

π2fπ

� 1

0

dx

(1 + x)2
xQ2Pqq̄/(8π2f2

π). (19)

Eq. (19) gives the same value for Fπγ(0) as (14) which was obtained with the free current.

Thus the anomaly result Fπγ(0) = 1/(4π2fπ) is reproduced if Pqq̄ = 0.5 is also taken in

(19). Upon integration by parts, Eq. (19) can also be written as

Q2Fπγ(Q
2
) = 8fπ

� 1

0

dx
1− x

(1 + x)3

�
1− xQ2Pqq̄/(8π2f2

π)
�

. (20)

Noticing that the second term in Eq. (20) vanishes at the limit Q2 → ∞, one recovers

Brodsky-Lepage’s asymptotic prediction for the pion TFF: Q2Fπγ(Q2 →∞) = 2fπ. [11]

The results calculated with (19) for Pqq̄ = 0.5 are shown as dashed curves in Figs. 1

and 2. One can see that the calculations with the dressed current are larger as compared

with the results computed with the free current and the experimental data at low- and

medium-Q2 regions (Q2 < 10 GeV2). The new results again disagree with BABAR’s data

at large Q2.

11

(Chern-Simons)
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x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

gu→ γu

pp→ γX

E dσ
d3p

(pp→ γX) = F (θcm,xT )
p4
T

− d
dζ2 ≡

k2
⊥

x(1−x)

Conjecture for massive quarks

− d
dζ2 → − d

dζ2 + m2
a

x +
m2

b
1−x ≡

k2
⊥+m2

a
x +

k2
⊥+m2

b
1−x

LF Kinetic Energy in 
momentum space 

Holographic Variable

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

�
− d2

d2ζ
+ V (ζ)

�
φ(ζ) =M2φ(ζ)

�
− d2

dζ2 + V (ζ)
�
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

�L = �P × �R

Assume LFWF is a dynamical function of the  quark-
antiquark invariant mass squared

− d

dζ2
→ − d

dζ2
+

m2
1

x
+

m2
2

1− x
≡ k2

⊥ + m2
1

x
+

k2
⊥ + m2

2

1− x

de Teramond, sjbm1

m2
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ψ(x,b⊥) =
cκ√

π

�
x(1− x) e

− 1
2κ2x(1−x)b2

⊥−
1

2κ2

»
m2

1
x −

m2
2

1−x

–

ψ(x,k⊥) =
4πc

κ
�

x(1− x)
e
− 1

2κ2

„
k2
⊥

x(1−x)+
m2

1
x +

m2
2

1−x

«

z → ζ → χ

χ2 = b2x(1− x) +
1
κ4

[
m2

1

x
+

m2
2

1− x
]

Result:  Soft-Wall LFWF  for massive constituents  

LF WF  in  impact space: soft-wall model 
with massive quarks 

+
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where c is the dimensionless normalization factor

c−2 =
� 1

0
dx e

− 1
κ2

„
m2

1
x +

m2
2

1−x

«

. (5)

The Fourier transform of (4) is the impact space LFWF

�ψ(x,b⊥) =
c κ√

π

�
x(1− x) e−

1
2 κ2χ2

, (6)

where the invariant quantity χ is

χ2 = x(1− x)b2
⊥ +

1
κ4

�
m2

1

x
+

m2
2

1− x

�
. (7)

Impact space holographic LFWFs for the π, K, D, ηc, B
and ηb mesons are depicted in Fig. 1.

The non-perturbative input to hard exclusive processes
and heavy hadron decays can be computed in terms of
gauge invariant hadronic distribution amplitudes (DAs),
which describe the momentum-fraction distribution of
partons at zero transverse impact distance in a Fock
state with a fixed number of constituents. The me-
son DA is computed from the transverse integral of the
valence quark light-front wavefunction in the light-cone
gauge [17]

φM (x,Q) =
� k2

⊥<Q2
d2k⊥
16π3

ψM (x,k⊥), (8)

and thus φ(x) ≡ φ(x,Q → ∞) → �ψ(x,b⊥ → 0)/
√

4π.
From (6) we obtain the holographic distribution ampli-
tude φ(x)

φM (x) =
c κ

2π

�
x(1− x) e

− 1
2κ2

»
m2

1
x +

m2
2

1−x

–

, (9)

in the soft wall model. The distribution amplitudes for
the π, K, D, ηc, mesons are shown in Fig. 2. Predictions
for the first and second moment of the meson distribution
amplitude

�ξN �M =

� 1
−1 ξNφM (ξ)
� 1
−1 φM (ξ)

, (10)

and comparison with available lattice computations are
given on Table I . In the chiral limit, the AdS distribu-
tion amplitude φAdS(x) ∼

�
x(1− x) gives for the second

moment �ξ2�AdS → 1/4, compared with the asymptotic
value �ξ2�PQCD → 1/5 from the PQCD asymptotic DA
φPQCD(x) ∼ x(1− x) [17] .

...............

III. PARTONIC MASS SHIFT

We compute the partonic mass shift contribution to a
meson due to the constituents quark masses [21]

M2 =M2
massless +

�
m2

1

x

�
+

�
m2

2

1− x

�
, (11)

FIG. 1: Two-parton flavored meson holographic LFWF
ψ(x,b⊥): (a) |π+� = |ud�, (b) |K+� = |us�, (c) |D+� = |cd�,
(d) |ηc� = |cc�, (e) |B+� = |ub� and (f) |ηb� = |bb�. Values
for the quark masses used are mu = 2 MeV, md = 5 MeV,
ms = 95 Mev, mc = 1.25 GeV and mb = 4.2 GeV. The value
of κ = 0.375 GeV is extracted from the pion form factor [16].

for the holographic LFWF (4). Results for the partonic
mass shift contribution ∆M =

�
M2 −M2

massless

�1/2 are
compared with hadronic masses on Table II.

.....

IV. CONCLUSIONS

..........

|π+ >= |ud̄ > |K+ >= |us̄ >

|D+ >= |cd̄ >

|ηb >= |bb̄ >

|ηc >= |cc̄ >

mu = 2 MeV
md = 5 MeV

ms = 95 MeV

mc = 1.25 GeV

mb = 4.2 GeV

κ = 375 MeV

b[GeV−1]

x

|B+ >= |ub̄ >
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and Conformal SO
(4,2) symmetries of 3+1 space 

to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD

Conformal behavior at short distances
+ Confinement at large distance

Counting rules for Hard Exclusive 
Scattering

Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level
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Future Directions

• BLFQ -- use AdS/QCD basis to diagonalize HLF

• Lippmann-Schwinger -- perturbatively generate higher Fock States and 
systematically approach QCD   Hiller and Chabysheva

• Hadronization at the Amplitude Level -- Off-Shell T-matrix convoluted 
with AdS/QCD LFWFs

• Hidden Color  C. Ji , Lepage, sjb

• Intrinsic Heavy Quarks from confinement interaction

• Direct Processes at the LHC 

• Dynamic vs. Static Structure Functions

• AdS/QCD for DVCS, Hadrons with Heavy Quarks

• LF Vacuum, In-Hadron Condensates, and the Cosmological Constant

Vary 
Honkanen, sjb

et al.

89
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Use AdS/CFT orthonormal Light Front Wavefunctions
as a basis for diagonalizing the QCD LF Hamiltonian

• Good initial approximation

• Better than plane wave basis

• DLCQ discretization -- highly successful 1+1

• Use independent HO LFWFs, remove CM motion

• Similar to Shell Model calculations

• Hamiltonian light-front field theory within an AdS/QCD basis. 
J.P. Vary, H. Honkanen, Jun Li, P. Maris, A. Harindranath,                                             

G.F. de Teramond, P. Sternberg, E.G. Ng, C. Yang, sjb
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Set of transverse 2D HO modes for n = 1
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Features of Soft-Wall AdS/QCD

• Single-variable frame-independent radial Schrodinger equation

• Massless pion (mq =0)

• Regge Trajectories: universal slope in  n and L

• Valid for all integer J & S.   

• Dimensional Counting Rules for Hard Exclusive Processes

• Phenomenology: Space-like and Time-like Form Factors

• LF Holography: LFWFs;  broad distribution amplitude

• Large Nc limit not required

• Add quark masses to LF kinetic energy

• Systematically  improvable -- diagonalize HLF on AdS basis
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Features of  AdS/QCD LF Holography

• Based on Conformal Scaling of Infrared QCD Fixed Point

• Conformal template: Use isometries of AdS5

• Interpolating operator of hadrons based on twist, superfield 
dimensions

• Finite Nc = 3: Baryons built on 3 quarks -- Large Nc limit not 
required

• Break Conformal symmetry with dilaton

• Dilaton introduces confinement -- positive exponent

• Origin of Linear and HO potentials: Stochastic arguments 
(Glazek); General  ‘classical’ potential  for Dirac Equation (Hoyer)

• Effective Charge from AdS/QCD at all scales

• Conformal Dimensional Counting Rules for Hard Exclusive 
Processes
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A Theory of Everything Takes Place
SCIENCE  VOL  265 15 SEPTEMBER 1995

String theorists have broken an impasse and may be on 
their way to converting this mathematical structure -- 
physicists’ best hope for unifying gravity and quantum 

theory -- into a single coherent theory.
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c̄

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0
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