AdS/QCD and Light-Front Holography: A Novel Approach to Confinement and Non-Perturbative QCD

Fixed $\tau=t+z / c$

Workshop on Confinement Physics March 12-15, 2012
Thomas Jefferson National Accelerator Facility Newport News, VA
Stan Brodsky
SLAC

- As Simple as Schrödinger Theory in Atomic Physics
- Relativistic, Frame-Independent, Color-Confining
- QCD Coupling at all scales
- Hadron Spectroscopy
- Light-Front Wavefunctions
- Form Factors, Hadronic Observables, Constituent Counting Rules
- Insight into QCD Condensates
- Systematically improvable

Dírac'sAmazing Idea:
The Front Form
Evolve in

Instant Form

Evolve in
 light-front time!

Front Form

Light-Front QCD

Exact formulation of nonperturbative QCD

$$
\begin{gathered}
L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
H_{L F}^{i n t} \text { Physical gauge: Matrix in Fock Space } \\
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
\begin{array}{c}
\text { Eigenvalues and Eigensolutions give Hetadronic } \\
\text { Spectrum and Light-Front wavefunctions }
\end{array} \\
\hline 4
\end{gathered}
$$

Light－Front QCD

Heisenberg Matrix

 Formulation$$
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

Discretized Light－Cone Quantization

n Sector	1 $9 \overline{9}$	$\begin{gathered} 2 \\ \mathrm{gg} \end{gathered}$	$\begin{gathered} 3 \\ q \bar{q} g \end{gathered}$	4 $q \bar{q} q \bar{q}$	$\begin{gathered} 5 \\ \mathrm{gg} \mathrm{~g} \end{gathered}$	$\begin{gathered} 6 \\ q \bar{q} g g \end{gathered}$	$\begin{gathered} 7 \\ q \bar{q} q \bar{q} g \end{gathered}$	$\begin{gathered} 8 \\ q \bar{q} q \bar{q} q \bar{q} \end{gathered}$	$\begin{gathered} 9 \\ g g \mathrm{gg} \end{gathered}$	$\begin{gathered} 10 \\ q \bar{q} g g \mathrm{~g} \end{gathered}$	$\begin{gathered} 11 \\ q \bar{q} q \bar{q} g g \end{gathered}$	12 $q \bar{q} q \bar{q} q \bar{q} g$	$\begin{gathered} 13 \\ q \bar{q} q \bar{व} q \bar{q} q \bar{व} \end{gathered}$
$1 \quad 9 \bar{q}$			$-k_{n}$	ξ	－	n	－	－	－	－	－	－	－
2 gg	\pm		m	．	$\mathrm{m}_{\substack{n}}$	\bar{m}	－	－	$\overline{k_{2}}$	－	－	－	－
3 q 9 g	$3-$	\geqslant	WIE	m		Mr	交	－	－	7	－	－	－
$4 \mathrm{q} 9 \mathrm{q} \bar{\square}$	3	－	\geqslant	$\stackrel{5}{4}$	．		$-k_{2}$	ξ	－	－	\bar{T}	－	－
5 ggg	－	3mm		．			－	－	mus	m	．	－	－
$6 \quad \mathrm{q} 9 \mathrm{gg}$	nt	In	Kam		\geqslant		m	－	Im	$-k_{2}$	等	－	－
$7 \mathrm{q} 9 \mathrm{q} 9 \mathrm{q} g$	．	．	－7	$3-$	．		$\sqrt{4}$	m	．	In	$-\xi$	等	－
$8 \mathrm{q} q \bar{q}^{\text {qu }} \mathrm{q} \overline{\mathrm{q}}$	－	－	．	3	－	－	\geqslant		－	．	Im	$-\xi_{2}$	主
$9 \quad \mathrm{gg} \mathrm{gg}$	－	mum	－	－	3mm	m^{-}	．	．	$\overline{y y}$	m	．	．	．
10 q ¢ gg g	－	．	y_{5}	－	\exists^{m}	$3-$	－	－	$\%$		m	－	－
$11 \mathrm{qq} 9 \bar{q} \mathrm{~g} 9$	－	－	．	3	－	$\frac{3}{3}$	3	m^{-}	．	$>$	IN		－
$12 \mathrm{q} q \mathrm{q} q \mathrm{q} 9 \overline{\mathrm{q}} \mathrm{g}$	－	－	－	．	－	－	$\frac{3}{3}$		－	．	\geqslant		m
$13 \mathrm{q} 9 \mathrm{q} \bar{q} q \bar{q} q \bar{q}$	－	－	－	－	－	－		$\frac{3}{3}$	－	－	．		

Eigenvalues and Eigensolutions give Hadron Spectrum and Light－Front wavefunctions

Pauli，Hornbostel \＆sjb e．g．solve QCD（I＋1）：arbitransy color，flavor，quark mass

LIGHT-FRONT SCHRODINGER EQUATION

Dírect connection to QCD Lagrangian

$$
\begin{aligned}
& \left(M_{\pi}^{2}-\sum_{i} \frac{\vec{k}_{1}^{2}+m_{i}^{2}}{x_{i}}\right)\left[\begin{array}{c}
\psi_{q \bar{q} / \pi} \\
\psi_{g \bar{q} g / \pi} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccc}
\langle q \bar{q}| V|q \bar{q}\rangle & \langle q \bar{q}| V|q \bar{q} g\rangle & \cdots \\
\langle q \bar{q} g| V|q \bar{q}\rangle & \langle q \bar{q} g| V|q \bar{q} g\rangle & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\psi_{q \bar{q} / \pi} \\
\psi_{q \bar{q} g / \pi} \\
\vdots
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A^{+}=0 \\
& \text { G.P. Lepage, sjb }
\end{aligned}
$$

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heavy quarks $s(x), c(x), b(x)$ at $\operatorname{high} x$!

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x) \\
& \hline
\end{aligned}
$$

Mueller: gluonic Fock states >> BFKL

HERMES: Two components to $s\left(x, Q^{2}\right)$!

W. C. Chang and J.-C. Peng arXiv:IIo5.238I

Intrinsic strangeness!

Consistent with intrinsic charm data

Comparison of the HERMES $x(s(x)+\bar{s}(x))$ data with the calculations based on the BHPS model. The solid and dashed curves

QCD: $\frac{1}{M_{Q}^{2}}$ scaling are obtained by evolving the BHPS result to $Q^{2}=2.5 \mathrm{GeV}^{2}$ using $\mu=0.5 \mathrm{GeV}$ and $\mu=0.3 \mathrm{GeV}$, respectively. The normalizations of the calculations are adjusted to fit the data at $x>0.1$ with statistical errors only, denoted by solid circles.

$$
s\left(x, Q^{2}\right)=s\left(x, Q^{2}\right)_{\text {extrinsic }}+s\left(x, Q^{2}\right)_{\text {intrinsic }}
$$

BHPS: Hoyer, Peterson, Sakai, sjb

$<p\left|\frac{G_{\mu \nu}^{3}}{m_{Q}^{2}}\right| p>$ vs. $<p\left|\frac{F_{\mu \nu}^{4}}{m_{\ell}^{4}}\right| p>$
$\mid u u d c \bar{c}>$ Fluctuation in Proton QCD: Probability $\frac{\sim \Lambda_{Q C D}^{2}}{M_{Q}^{2}}$
$\mid e^{+} e^{-} \ell^{+} \ell^{-}>$Fluctuation in Positronium QED: Probability $\frac{\sim\left(m_{c} \alpha\right)^{4}}{M_{\ell}^{4}}$

OPE derivation - M.Polyakov et al.
$c \bar{c}$ in Color Octet

Distribution peaks at equal rapidity (velocity)
Therefore heavy particles carry the largest momentum fractions

$$
\widehat{x}_{i}=\frac{m_{\perp i}}{\sum_{j}^{n} m_{\perp j}}
$$

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$

High echarm! JLab: Charm at Threshold
Action Principle: Minimum KE, maximal potential

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Fixed $\tau=t+z / c$

LFWFs: off invariant mass-shell, infinite \# components

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad \underset{\substack{n_{n}^{n_{i}} x_{i}=1 \\ i \vec{l}_{i}=\bar{\sigma}_{\perp}}}{ }
$$

Invariant under boosts! Independent of P^{μ}

JLab, March 12, 2011
Light-Front Holography and QCD
Stan Brodsky

Angular Momentum on the Light-Front

$$
\begin{array}{cc}
J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z} . & \begin{array}{c}
\text { Conserved in each } \\
\text { LF Fock state }
\end{array} \\
l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right) & \begin{array}{c}
\mathrm{n}=\mathrm{I} \text { orbital angular } \\
\text { momenta }
\end{array}
\end{array}
$$

Nonzero Anomalous Moment -->Nonzero orbital angular momentum

Hadron Distribution Amplitudes

$$
\phi_{M}(x, Q)=\int^{Q} d^{2} \vec{k} \psi_{q \bar{q}}\left(x, \vec{k}_{\perp}\right) \quad k_{\perp}^{2}<Q^{2}
$$

- Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for Mesons, Baryons
- Evolution Equations from PQCD, OPE

Lepage, sjb Efremov, Radyushkin Sachrajda, Frishman Lepage, sjb

Braun, Gardi

- Conformal Invariance
- Compute from valence light-front wavefunction in lightcone gauge

JLab, March 12, 2011

Calculation of Form Factors in Equal-Time Theory

Instant Form,

Need vacuum-induced currents
Calculation of Form Factors in Light-Front Theory
Front Form

JLab, March 12, 2011

Absent for $q^{+}=0$
No vacuum graphs
Stan Brodsky
Drell, Yan; West

$$
\text { spectators } \quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}-x_{i} \vec{q}_{\perp}
$$

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
& \text { Drell, sjb } \\
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\llcorner *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} \quad \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp} \\
& \text { (}
\end{aligned}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$
Nonzero Proton Anomalous Moment -->
Nonzero orbital quark angular momentum
JLab, March 12, 2011
Light-Front Holography and QCD
Stan Brodsky

- Need to boost proton instant form wavefunction from p to $p+q$: Extremely complicated dynamical problem; particle number changes
- Need to couple to all currents arising from vacuum!
- Wavefunctions alone do not determine hadronic properties!
- Each time-ordered contribution is frame-dependent
- None of these problems occur in the front form!

Anomalous gravitomagnetic moment $B(0)$

Terayev, Okun, et al: $\mathcal{B}(0)$ Must vanish because of
Equivalence Theorem

Hwang, Schmidt, Ma, sjb

$$
B(0)=0
$$

Each Fock State

Leading Twist Sivers Effect

Hwang, Schmidt, sjb

$$
\text { i } \vec{S}_{p} \cdot \vec{q} \times \vec{p}_{q}
$$

Psendo-T-Oda

Light-Front Wavefunction
S and P-Waves!

Yuan. Pasquini, ...

QCD S- and P-
Coulomb Phases
--Wilson Line
"Lensing Effect"
Leading-Twist Rescattering Violates PQCD Factorization!
sign reversal in $D Y$!
JLab, March 12, 2011
Light-Front Holography and QCD
Stan Brodsky

8 leading-twist spin- \boldsymbol{k}_{\perp} dependent distribution functions

JLab, March 12, 2011
Light-Front Holography and QCD

Example of LFWF representation of GPDs ($\mathrm{n}=>\mathrm{n}$)

Diehl, Hwang, sjb

$$
\begin{aligned}
\frac{1}{\sqrt{1-\zeta}} & \frac{\Delta^{1}-i \Delta^{2}}{2 M} E_{(n \rightarrow n)}(x, \zeta, t) \\
=(\sqrt{1-\zeta})^{2-n} \sum_{n, \lambda_{i}} \int \prod_{i=1}^{n} & \frac{\mathrm{~d} x_{i} \mathrm{~d}^{2} \vec{k}_{\perp i}}{16 \pi^{3}} 16 \pi^{3} \delta\left(1-\sum_{j=1}^{n} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n} \vec{k}_{\perp j}\right) \\
& \times \delta\left(x-x_{1}\right) \psi_{(n)}^{\uparrow *}\left(x_{i}^{\prime}, \vec{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{(n)}^{\downarrow}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right),
\end{aligned}
$$

where the arguments of the final-state wavefunction are given by

$$
\begin{array}{ll}
x_{1}^{\prime}=\frac{x_{1}-\zeta}{1-\zeta}, & \vec{k}_{\perp 1}^{\prime}=\vec{k}_{\perp 1}-\frac{1-x_{1}}{1-\zeta} \vec{\Delta}_{\perp} \\
x_{i}^{\prime}=\frac{x_{i}}{1-\zeta}, & \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}+\frac{x_{i}}{1-\zeta} \vec{\Delta}_{\perp}
\end{array} \quad \text { for the struck quark }, ~=2, \ldots, n .
$$

Frame-Independent Hadron Eigenfunctions of the QCD Hamiltonian

Light-Front Wavefunctions plus lensing

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \rightarrow \text { GTMDS }
$$

Transverse density in momentum space

$$
\begin{aligned}
& \vec{k}_{\perp} \leftrightarrow \vec{z}_{\perp} \\
& \vec{\Delta}_{\perp} \leftrightarrow \vec{b}_{\perp}
\end{aligned}
$$

Lorce
$\xi=0$
$\rightarrow \quad \int \mathrm{d}^{2} b_{\perp}$
$\rightarrow \quad \int \mathrm{d} x$
$\longrightarrow \quad \int \mathrm{d}^{2} k_{\perp}$

Light-Front Wave Function Overlap Representation

DVCS/GPD

Diehl, Hwang, sjb, NPB596, 200 I
See also: Diehl, Feldmann, Jakob, Kroll

DGLAP region

ERBL region

DGLAP region,

Bakker \& JI
Lorce

JLab, March 12, 2011
Light-Front Holography and QCD
Stan Brodsky

Link to DIS and Elastic Form Factors

$$
\begin{aligned}
& \text { DIS at } \xi=t=0 \\
& H^{q}(x, 0,0)=q(x), \quad-\bar{q}(-x) \\
& \widetilde{H}^{q}(x, 0,0)=\Delta q(x), \quad \Delta \bar{q}(-x)
\end{aligned}
$$

Form factors (sum rules)
$\int_{1}^{1} d x \sum_{q}\left[H^{q}(x, \xi, t)\right]=F_{1}(t)$ Dirac f.f.
$\int_{-1}^{1} d x \sum_{q}\left[E^{q}(x, \xi, t)\right]=F_{2}(t)$ Pauli f.f.
$\int_{-1}^{1} d x \widetilde{H}^{q}(x, \xi, t)=G_{A, q}(t), \int_{-1}^{1} d x \widetilde{E}^{q}(x, \xi, t)=G_{P, q}(t)$

Verified using LFWF

Diehl, Hwang, sjb

Quark angular momentum (Ji's sum rule)

$$
J^{q}=\frac{1}{2}-J^{G}=\frac{1}{2} \int_{-1}^{1} x d x\left[H^{q}(x, \xi, 0)+E^{q}(x, \xi, 0)\right]
$$

$J=0$ Fixed Pole Contribution to DVCS

- J=o fixed pole -- direct test of QCD locality -- from seagull or instantaneous contribution to Feynman propagator

Real amplitude, independent of Q^{2} at fixed t
JLab, March 12, 2011
Light-Front Holography and QCD

Deeply Virtual Compton Scattering

$$
\gamma^{*} p \rightarrow \gamma p
$$

> Seagull interaction (instantaneous quark exchange or Z-graph)

$$
s \gg-t, Q^{2} \gg \Lambda_{Q C D}^{2}
$$

Hard Reggeon
 Domain

$$
T\left(\gamma^{*}(q) p \rightarrow \gamma(k)+p\right) \sim \epsilon \cdot \epsilon^{\prime} \sum_{R} s_{R}^{\alpha}(t) \beta_{R}(t)
$$

$$
\alpha_{R}(t) \rightarrow 0 \quad \text { Reflects elementary coupling of two photons to quarks }
$$

$$
\beta_{R}(t) \sim \frac{1}{t^{2}}
$$

$$
\frac{d \sigma}{d t} \sim \frac{1}{s^{2}} \frac{1}{t^{4}} \sim \frac{1}{s^{6}} \text { at fixed } \frac{Q^{2}}{s}, \frac{t}{s}
$$

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

JLab, March 12, 2011

Off -Shell T-Matrix

Event amplitude generator

- Quarks and Gluons Off-Shell
- LFPth: Minimal Time-Ordering Diagrams-Only positive $\mathbf{k +}$
- \mathbf{J}^{z} Conservation at every vertex
- Frame-Independent
- Cluster Decomposition ChuengJi, sjb
- "History"-Numerator structure universal
- Renormalization- alternate denominators
- LFWF takes Off-shell to On-shell

Roskies, Suaya, sjb

- Tested in QED: g-2 to three loops

JLab, March 12, 2011
Light-Front Holography and QCD
Stan Brodsky

QCD and LF Hadron Wavefunctions

AdS/QCD

Light-Front Holography LF Schrodinger Eqn

Initial and Final State Rescattering DDIS, DDIS, T-Odd

Non-Universal Antishadowing

Heavy Quark Fock States
Intrinsic Charm

Coordinate space representation

$H_{Q E D}$

QED atoms: positronium and muonium

Coupled Fock states
$\left(H_{0}+H_{\text {int }}\right)|\Psi>=E| \Psi>$
$\left[-\frac{\Delta^{2}}{2 m_{\text {red }}}+V_{\text {eff }}(\vec{S}, \vec{r})\right] \psi(\vec{r})=E \psi(\vec{r})$

$$
\left[-\frac{1}{2 m_{\mathrm{red}}} \frac{d^{2}}{d r^{2}}+\frac{1}{2 m_{\mathrm{red}}} \frac{\ell(\ell+1)}{r^{2}}+V_{\mathrm{eff}}(r, S, \ell)\right] \psi(r)=E \psi(r)
$$

$$
V_{e f f} \rightarrow V_{C}(r)=-\frac{\alpha}{r}
$$

SphericalBasis r, θ, ϕ

Coulomb potentiat

Bohr Spectrum

Semiclassical fürst approximation to QED

$H_{Q C D}^{L F}$

QCD Meson Spectrum

$$
\left(H_{L F}^{0}+H_{L F}^{I}\right)\left|\Psi>=M^{2}\right| \Psi>
$$

Coupled Fock states

$$
\zeta^{2}=x(1-x) b_{\perp}^{2}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{4 L^{2}-1}{\zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta) \quad \text { Azimuthat Basis } \zeta, \phi
$$

$$
U(\zeta, S, L)=\kappa^{2} \zeta^{2}+\kappa^{2}(L+S-1 / 2)
$$

Semiclassical first approximation to QCD
Confining $A d S / Q C D$ potential de Teramond, sjb

Derivation of the Light-Front Radial Schrodinger Equation directly from LF QCD

$$
\begin{aligned}
\mathcal{M}^{2} & =\int_{0}^{1} d x \int \frac{d^{2} \vec{k}_{\perp}}{16 \pi^{3}} \frac{\vec{k}_{\perp}^{2}}{x(1-x)}\left|\psi\left(x, \vec{k}_{\perp}\right)\right|^{2}+\text { interactions } \\
& =\int_{0}^{1} \frac{d x}{x(1-x)} \int d^{2} \vec{b}_{\perp} \psi^{*}\left(x, \vec{b}_{\perp}\right)\left(-\vec{\nabla}_{\vec{b}_{\perp \ell}}^{2}\right) \psi\left(x, \vec{b}_{\perp}\right)+\text { interactions. }
\end{aligned}
$$

$\underset{\text { variables }}{\text { Change }} \quad(\vec{\zeta}, \varphi), \vec{\zeta}=\sqrt{x(1-x)} \vec{b}_{\perp}: \quad \nabla^{2}=\frac{1}{\zeta} \frac{d}{d \zeta}\left(\zeta \frac{d}{d \zeta}\right)+\frac{1}{\zeta^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}$

$$
\begin{aligned}
\mathcal{M}^{2}= & \int d \zeta \phi^{*}(\zeta) \sqrt{\zeta}\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1}{\zeta} \frac{d}{d \zeta}+\frac{L^{2}}{\zeta^{2}}\right) \frac{\phi(\zeta)}{\sqrt{\zeta}} \\
& +\int d \zeta \phi^{*}(\zeta) U(\zeta) \phi(\zeta) \\
= & \int d \zeta \phi^{*}(\zeta)\left(-\frac{d^{2}}{d \zeta^{2}}+\frac{4 L^{2}-1}{4 \zeta^{2}}+U(\zeta)\right) \phi(\zeta)
\end{aligned}
$$

Light-Front Holography and Non-Perturbative QCD

Goal:
Use AdS/QCD duality to construct a first approximation to QCD

Hadron Spectrum
Light-Front Wavefunctions, Running coupling in IR

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

in collaboration with Guy de Teramond

Central problem for strongly-coupled gauge theories

JLab, March 12, 2011
Light-Front Holography and QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

Light-Front Holography
in collaboration with Guy de Teramond

- Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_{0}=1 / \Lambda_{\mathrm{QCD}}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).
- Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ - usual linear Regge dependence can be obtained (Soft-Wall Model) • Erlich, Karch, Katz, Son, Stephanov

JLab, March 12, 2011
Light-Front Holography and QCD
Stan Brodsky

Scale Transformations

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

Bosonic Solutions: Hard Wall Model

- Conformal metric: $d s^{2}=g_{\ell m} d x^{\ell} d x^{m} . x^{\ell}=\left(x^{\mu}, z\right), g_{\ell m} \rightarrow\left(R^{2} / z^{2}\right) \eta_{\ell m}$.
- Action for massive scalar modes on AdS_{d+1} :

$$
S[\Phi]=\frac{1}{2} \int d^{d+1} x \sqrt{g} \frac{1}{2}\left[g^{\ell m} \partial_{\ell} \Phi \partial_{m} \Phi-\mu^{2} \Phi^{2}\right], \quad \sqrt{g} \rightarrow(R / z)^{d+1} .
$$

- Equation of motion

$$
\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{\ell}}\left(\sqrt{g} g^{\ell m} \frac{\partial}{\partial x^{m}} \Phi\right)+\mu^{2} \Phi=0
$$

- Factor out dependence along x^{μ}-coordinates, $\Phi_{P}(x, z)=e^{-i P \cdot x} \Phi(z), P_{\mu} P^{\mu}=\mathcal{M}^{2}$:

$$
\left[z^{2} \partial_{z}^{2}-(d-1) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi(z)=0 .
$$

- Solution: $\Phi(z) \rightarrow z^{\Delta}$ as $z \rightarrow 0$,

$$
\begin{array}{rc}
\Phi(z)=C z^{d / 2} J_{\Delta-d / 2}(z \mathcal{M}) & \Delta=\frac{1}{2}\left(d+\sqrt{d^{2}+4 \mu^{2} R^{2}}\right) . \\
\Delta=2+L \quad d=4 & (\mu R)^{2}=L^{2}-4
\end{array}
$$

JLab, March 12, 2011
Light-Front Holography and QCD
Stan Brodsky

$$
\text { Let } \Phi(z)=z^{3 / 2} \phi(z)
$$

AdS Schrodinger Equation for bound state of two scalar constituents:

$$
\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}\right] \phi(z)=\mathcal{M}^{2} \phi(z)
$$

$$
\mathbf{L}=\mathbf{L}^{z}: \text { light-front orbital angular momentum }
$$

Derived from variation of Action in $A d S_{5}$
Hard wall model: truncated space

$$
\phi\left(\mathrm{z}=\mathrm{z}_{0}=\frac{1}{\Lambda_{\mathrm{c}}}\right)=0 .
$$

JLab, March 12, 2011

Fig: Orbital and radial AdS modes in the hard wall model for $\Lambda_{\mathrm{QCD}}=0.32 \mathrm{GeV}$.

Fig: Light meson and vector meson orbital spectrum $\Lambda_{Q C D}=0.32 \mathrm{GeV}$

Hadron Form Factors from AdS/CFT

Propagation of external perturbation suppressed inside AdS.

$$
\begin{aligned}
J(Q, z) & =z Q K_{1}(z Q) \\
F\left(Q^{2}\right)_{I \rightarrow F} & =\int \frac{d z}{z^{3}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
\end{aligned}
$$

High Q ${ }^{2}$
from
small z $\sim 1 / Q$

$$
\operatorname{high} Q^{2 \overbrace{1}{ }^{2} \mathrm{z}^{4}{ }_{5}^{5}}
$$

Polchinski, Strassler de Teramond, sjb

Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small z, Φ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1}
$$

Dimensional Quark Counting Rules:
General result from
AdS/CFT and Conformal Invariance
where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$. The twist is equal to the number of partons, $\tau=n$.
JLab, March 12, 2011
Light-Front Holography and QCD
Stan Brodsky

Spacelike pion form factor from AdS/CFT

Data Compilation
Baldini, Kloe and Volmer

—— Soft Wall: Harmonic Oscillator Confinement

- Hard Wall: Truncated Space Confinement

One parameter - set by pion decay constant

JLab, March 12, 2011
Light-Front Holography and QCD
de Teramond, sjb
See also: Radyushkin Stan Brodsky

- Nonconformal metric dual to a confining gauge theory

$$
d s^{2}=\frac{R^{2}}{z^{2}} e^{\varphi(z)}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

where $\varphi(z) \longrightarrow 0$ at small z for geometries which are asymptotically AdS_{5}

- Gravitational potential energy for object of mass m

$$
V=m c^{2} \sqrt{g_{00}}=m c^{2} R \frac{e^{\varphi(z) / 2}}{z}
$$

- Consider warp factor $\exp \left(\pm \kappa^{2} z^{2}\right)$
- Plus solution: $V(z)$ increases exponentially confining
 any object in modified AdS metrics to distances $\langle z\rangle \sim 1 / \kappa$
- de Teramond, sjb

Ads Soft-Wall Schrodinger Equation for

 bound state of two scalar constituents:$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}+\frac{4 L^{2}-1}{4 z^{2}}+U(z)\right] \phi(z)=\mathcal{M}^{2} \phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action : Dülaton-Modified $A d S_{5}$

$$
\mathcal{S} \rightarrow \mathcal{S} \Phi(z)=\mathcal{S} e^{+\kappa^{2} z^{2}}
$$

Positive-sign dilaton

Fig: Orbital and radial AdS modes in the soft wall model for $\kappa=0.6 \mathrm{GeV}$.

Soft Wall
 Model

$m_{q}=0$

JLab, March 12, 2011
Light-Front Holography and QCD

Bosonic Modes and Meson Spectrum

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+J / 2+L / 2) \rightarrow 4 \kappa^{2}(n+L+S / 2) \begin{gathered}
4 \kappa^{2} \text { for } \Delta n=1 \\
4 \kappa^{2} \text { or } \Delta L=1 \\
2 \kappa^{2} \text { for } \Delta S=1
\end{gathered}
$$

$$
\text { Same slope in } n \text { and } L
$$

Rage trajectories for the $\pi(\kappa=0.6 \mathrm{GeV})$ and the $I=1 \rho$-meson and $I=0 \omega$-meson families $(\kappa=0.54 \mathrm{GeV})$

General-Spin Hadrons

- Obtain spin- J mode $\Phi_{\mu_{1} \cdots \mu_{J}}$ with all indices along 3+1 coordinates from Φ by shifting dimensions

$$
\Phi_{J}(z)=\left(\frac{z}{R}\right)^{-J} \Phi(z)
$$

- Substituting in the AdS scalar wave equation for Φ

$$
\left[z^{2} \partial_{z}^{2}-\left(3-2 J-2 \kappa^{2} z^{2}\right) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi_{J}=0
$$

- Upon substitution $z \rightarrow \zeta$

$$
\phi_{J}(\zeta) \sim \zeta^{-3 / 2+J} e^{\kappa^{2} \zeta^{2} / 2} \Phi_{J}(\zeta)
$$

we find the LF wave equation

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)\right) \phi_{\mu_{1} \cdots \mu_{J}}=\mathcal{M}^{2} \phi_{\mu_{1} \cdots \mu_{J}}
$$

with $(\mu R)^{2}=-(2-J)^{2}+L^{2}$

JLab, March 12, 2011

$$
\begin{gathered}
\mathcal{M}^{2}=2 \kappa^{2}(2 n+2 L+S) . \\
S=1
\end{gathered}
$$

$$
e^{\Phi(z)}=e^{+\kappa^{2} z^{2}} \quad \text { Positive-sign dilaton }
$$

AdS Soft-Wall Schrodinger Equation for bound state of two constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}+\frac{4 L^{2}-1}{4 z^{2}}+U(z)\right] \phi(z)=\mathcal{M}^{2} \phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action: Dilaton-Modified AdS ${ }_{5}$

Matches the LF QCD Schrodinger Equation !

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{4 L^{2}-1}{\zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=\mathcal{M}^{2} \psi_{L F}(\zeta)
$$

JLab, March 12, 2011

$$
\begin{aligned}
& \psi\left(x, \vec{b}_{\perp}\right) \longrightarrow \phi(z) \\
& \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \\
& \longrightarrow \longrightarrow \\
& z \\
& \psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta)
\end{aligned}
$$

Light Front Holography: Identical mapping derived from equality of LF (DYW) and AdS formulas for current matrix elements
JLab, March 12, 2011
Light-Front Holography and QCD
Stan Brodsky

Light-Front Holography: Map AdS/CFT to 3+1 LF Theory

Relativistic LF radial equation

$$
\begin{aligned}
& {\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{4 L^{2}-1}{\zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta)} \\
& \quad \zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} \\
& \begin{array}{c}
\text { G. de Teramond, sib }
\end{array} \\
& (1-x)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1) \\
& \text { confining pot wall } \\
& \text { cotialt }
\end{aligned}
$$

JLab, March 12, 2011

Gravitational Form Factor in Ads space

- Hadronic gravitational form-factor in AdS space

$$
A_{\pi}\left(Q^{2}\right)=R^{3} \int \frac{d z}{z^{3}} H\left(Q^{2}, z\right)\left|\Phi_{\pi}(z)\right|^{2},
$$

where $H\left(Q^{2}, z\right)=\frac{1}{2} Q^{2} z^{2} K_{2}(z Q)$

- Use integral representation for $H\left(Q^{2}, z\right)$

$$
H\left(Q^{2}, z\right)=2 \int_{0}^{1} x d x J_{0}\left(z Q \sqrt{\frac{1-x}{x}}\right)
$$

- Write the AdS gravitational form-factor as

$$
A_{\pi}\left(Q^{2}\right)=2 R^{3} \int_{0}^{1} x d x \int \frac{d z}{z^{3}} J_{0}\left(z Q \sqrt{\frac{1-x}{x}}\right)\left|\Phi_{\pi}(z)\right|^{2}
$$

- Compare with gravitational form-factor in light-front QCD for arbitrary Q

$$
\left|\tilde{\psi}_{q \bar{q} / \pi}(x, \zeta)\right|^{2}=\frac{R^{3}}{2 \pi} x(1-x) \frac{\left|\Phi_{\pi}(\zeta)\right|^{2}}{\zeta^{4}}
$$

Identical to LF Holography obtained from electromagnetic current

Light-Front Holography: Map AdS/CFT to 3+1 LF Theory

Relativistic LF radial equation Frame Independent

$$
\begin{aligned}
& {\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{4 L^{2}-1}{\zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=\mathcal{M}^{2} \psi_{L F}(\zeta)} \\
& \quad \zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} \\
& \quad U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1) \quad \\
& \text { G. de Teramond, sjb }
\end{aligned}
$$

- Propagation of external current inside AdS space described by the AdS wave equation

$$
\left[z^{2} \partial_{z}^{2}-z\left(1+2 \kappa^{2} z^{2}\right) \partial_{z}-Q^{2} z^{2}\right] J_{\kappa}(Q, z)=0
$$

- Solution bulk-to-boundary propagator

$$
J_{\kappa}(Q, z)=\Gamma\left(1+\frac{Q^{2}}{4 \kappa^{2}}\right) U\left(\frac{Q^{2}}{4 \kappa^{2}}, 0, \kappa^{2} z^{2}\right)
$$

Soft Wall

where $U(a, b, c)$ is the confluent hypergeometric function

$$
\Gamma(a) U(a, b, z)=\int_{0}^{\infty} e^{-z t} t^{a-1}(1+t)^{b-a-1} d t
$$

- Form factor in presence of the dilaton background $\varphi=\kappa^{2} z^{2}$

$$
F\left(Q^{2}\right)=R^{3} \int \frac{d z}{z^{3}} e^{-\kappa^{2} z^{2}} \Phi(z) J_{\kappa}(Q, z) \Phi(z)
$$

- For large $Q^{2} \gg 4 \kappa^{2}$

$$
J_{\kappa}(Q, z) \rightarrow z Q K_{1}(z Q)=J(Q, z)
$$

the external current decouples from the dilaton field.
JLab, March 12, 2011
Light-Front Holography and QCD

Dressed soft-wall current brings in higher Fock states and more vector meson poles

Spacelike and Timelike Pion Form Factor

Structure of the space- and time-like pion form factor in light-front holography for a truncation of the pron wave function up to twist four. Triangles are the data compilation from Baldini et al., [42] red squares are JLAB 1 [43] and green squares are JLAB 2. [44]

$$
\left|\pi>=\psi_{\bar{q} q / \pi}\right| \bar{q} q>+\psi_{\bar{q} q \bar{q} q / \pi} \mid q \bar{q} \bar{q} q>
$$

AdS/QCD $\quad \kappa=0.54 \mathrm{GeV}$

- Light-Front Holography

JLab, March 12, 2011
Light-Front Holography and QCD

Stan Brodsky

Prediction from AdS/CFT: Meson LFWF

"Soft Wall" model

 $\kappa=0.375 \mathrm{GeV}$$\phi_{M}\left(x, Q_{0}\right) \propto \sqrt{x(1-x)}$
Connection of Confinement to TMDs

Light-Front Holography and QCD

Stan Brodsky

Second Moment of Pion Distribution Amplitude

$$
<\xi^{2}>=\int_{-1}^{1} d \xi \xi^{2} \phi(\xi)
$$

$$
\xi=1-2 x
$$

$$
\begin{array}{rlrl}
<\xi^{2}>_{\pi} & =1 / 5 & =0.20 & \phi_{\text {asympt }} \propto x(1-x) \\
<\xi^{2}>_{\pi}=1 / 4=0.25 & \phi_{A d S / Q C D} \propto \sqrt{x(1-x)}
\end{array}
$$

Lattice (I) $<\xi^{2}>_{\pi}=0.28 \pm 0.03$
Donnellan et al.
Lattice (II) $<\xi^{2}>_{\pi}=0.269 \pm 0.039$
JLab, March 12, 2011
Light-Front Holography and QCD

Generalized parton distributions in AdS/QCD

Alfredo Vega ${ }^{1}$, Ivan Schmidt ${ }^{1}$, Thomas Gutsche ${ }^{2}$, Valery E. Lyubovitskij ${ }^{2 *}$

${ }^{1}$ Departamento de Física y Centro Científico y Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile

${ }^{2}$ Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics, Auf der Morgenstelle 14, D-72076 Tübingen, Germany

- Action for Dirac field in AdS_{d+1} in presence of dilaton background $\varphi(z)$ [Abidin and Carlson (2009)]

$$
S=\int d^{d+1} \sqrt{g} e^{\varphi}(z)\left(i \bar{\Psi} e_{A}^{M} \Gamma^{A} D_{M} \Psi+h . c+\varphi(z) \frac{\downarrow}{\Psi} \Psi-\mu \bar{\Psi} \Psi\right)
$$

- Factor out plane waves along $3+1: \quad \Psi_{P}\left(x^{\mu}, z\right)=e^{-i P \cdot x} \Psi(z)$

$$
\phi(z)=e^{\kappa^{2} z^{2}}
$$

$$
\left[i\left(z \eta^{\ell m} \Gamma_{\ell} \partial_{m}+2 \Gamma_{z}\right)+\mu R+\kappa^{2} z\right] \Psi\left(x^{\ell}\right)=0
$$

- Solution $\left(\nu=\mu R-\frac{1}{2}, \nu=L+1\right)$

$$
\Psi_{+}(z) \sim z^{\frac{5}{2}+\nu} e^{-\kappa^{2} z^{2} / 2} L_{n}^{\nu}\left(\kappa^{2} z^{2}\right), \quad \Psi_{-}(z) \sim z^{\frac{7}{2}+\nu} e^{-\kappa^{2} z^{2} / 2} L_{n}^{\nu+1}\left(\kappa^{2} z^{2}\right)
$$

- Eigenvalues (how to fix the overall energy scale, see arXiv:1001.5193)

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+L+1)
$$

positive parity

- Obtain spin- J mode $\Phi_{\mu_{1} \cdots \mu_{J-1 / 2}}, J>\frac{1}{2}$, with all indices along $3+1$ from Ψ by shifting dimensions
- Large $N_{C}: \quad \mathcal{M}^{2}=4 \kappa^{2}\left(N_{C}+n+L-2\right) \quad \Longrightarrow \mathcal{M} \sim \sqrt{N_{C}} \Lambda_{\mathrm{QCD}}$
- We write the Dirac equation

$$
(\alpha \Pi(\zeta)-\mathcal{M}) \psi(\zeta)=0
$$

in terms of the matrix-valued operator Π

$$
\nu=L+1
$$

$$
\Pi_{\nu}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}-\kappa^{2} \zeta \gamma_{5}\right)
$$

and its adjoint Π^{\dagger}, with commutation relations

$$
\left[\Pi_{\nu}(\zeta), \Pi_{\nu}^{\dagger}(\zeta)\right]=\left(\frac{2 \nu+1}{\zeta^{2}}-2 \kappa^{2}\right) \gamma_{5}
$$

- Solutions to the Dirac equation

$$
\begin{aligned}
& \psi_{+}(\zeta) \sim z^{\frac{1}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu}\left(\kappa^{2} \zeta^{2}\right) \\
& \psi_{-}(\zeta) \sim z^{\frac{3}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu+1}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Eigenvalues

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+\nu+1)
$$

JLab, March 12, 2011
Light-Front Holography and QCD

- $\boldsymbol{\Delta}$ spectrum identical to Forkel and Klempt, Phys. Lett. B 679, 77 (2009) Same multiplicity of states for mesons and baryons!
$4 \kappa^{2}$ for $\Delta n=1$
$4 \kappa^{2}$ for $\Delta L=1$
$2 \kappa^{2}$ for $\Delta S=1$
\mathcal{M}^{2}

Parent and daughter 56 Regge trajectories for the N and Δ baryon families for $\kappa=0.5 \mathrm{GeV}$

Light-Front Holography and QCD

Stan Brodsky

- $\boldsymbol{\Delta}$ spectrum identical to Forkel and Klempt, Phys. Lett. B 679, 77 (2009)

E. Klempt et al.: Δ^{*} resonances, quark models, chiral symmetry and AdS/QCD
H. Forkel, M. Beyer and T. Frederico, JHEP 0707 (2007)

77.

H. Forkel, M. Beyer and T. Frederico, Int. J. Mod. Phys.

E 16 (2007) 2794.
JLab, March 12, 2011

$$
M^{2}=4 \kappa^{2}(n+L+1) \quad M^{2}=4 \kappa^{2}(n+L+2)
$$

[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]
[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

- Nucleon LF modes

$$
\begin{aligned}
& \psi_{+}(\zeta)_{n, L}=\kappa^{2+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{3 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) \\
& \psi_{-}(\zeta)_{n, L}=\kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \\
& \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{5 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Normalization

$$
\int d \zeta \psi_{+}^{2}(\zeta)=\int d \zeta \psi_{-}^{2}(\zeta)
$$

- Eigenvalues

$$
\mathcal{M}_{n, L, S=1 / 2}^{2}=4 \kappa^{2}(n+L+1)
$$

- "Chiral partners"

$$
\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}}=\sqrt{2}
$$

Space-Like Dirac Proton Form Factor

- Consider the spin non-flip form factors

$$
\begin{aligned}
F_{+}\left(Q^{2}\right) & =g_{+} \int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{-}\left(Q^{2}\right) & =g_{-} \int d \zeta J(Q, \zeta)\left|\psi_{-}(\zeta)\right|^{2}
\end{aligned}
$$

where the effective charges g_{+}and g_{-}are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^{z}=+1 / 2$. The two AdS solutions $\psi_{+}(\zeta)$ and $\psi_{-}(\zeta)$ correspond to nucleons with $J^{z}=+1 / 2$ and $-1 / 2$.
- For $S U(6)$ spin-flavor symmetry

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =\int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{1}{3} \int d \zeta J(Q, \zeta)\left[\left|\psi_{+}(\zeta)\right|^{2}-\left|\psi_{-}(\zeta)\right|^{2}\right]
\end{aligned}
$$

where $F_{1}^{p}(0)=1, F_{1}^{n}(0)=0$.

JLab, March 12, 2011

Spacelike Pauli Form Factor

From overlap of $L=1$ and $L=0$ LFWFs

Spacelike Neutron Pauli Form Factor

From overlap of $L=1$ and $L=0$ LFWFs

Nucleon Transition Form Factors

- Compute spin non-flip EM transition $N(940) \rightarrow N^{*}(1440): \Psi_{+}^{n=0, L=0} \rightarrow \Psi_{+}^{n=1, L=0}$
- Transition form factor

$$
F_{1}^{p} p N^{*}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{n=1, L=0}(z) V(Q, z) \Psi_{+}^{n=0, L=0}(z)
$$

- Orthonormality of Laguerre functions $\quad\left(F_{1}{ }_{N \rightarrow N^{*}}(0)=0, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{n^{\prime}, L}(z) \Psi_{+}^{n, L}(z)=\delta_{n, n^{\prime}}
$$

- Find

$$
F_{1}{ }_{N \rightarrow N^{*}}^{p}\left(Q^{2}\right)=\frac{2 \sqrt{2}}{3} \frac{\frac{Q^{2}}{M_{P}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$

Consistent with counting rule, twist 3

$$
F_{1}^{p}{ }_{N \rightarrow N^{*}}\left(Q^{2}\right)=\frac{2 \sqrt{2}}{3} \frac{\frac{Q^{2}}{M_{P}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$

Nucleon Elastic and Transition Form Factors

$$
F_{1}^{p}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{M_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{M_{\rho^{\prime}}^{2}}\right)}, \quad \quad F_{1 N \rightarrow N^{*}}^{p}\left(Q^{2}\right)=\frac{\sqrt{2}}{3} \frac{\frac{Q^{2}}{M_{\rho}^{2}}}{\left(1+\frac{Q^{2}}{M_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{M_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{M_{\rho^{\prime \prime}}^{2}}\right)},
$$

Dirac proton form factors in light-front holographic QCD. Left: scaling of proton elastic form factor $Q^{4} F_{1}^{p}\left(Q^{2}\right)$. Right: proton transition form factor $F_{1 N \rightarrow N^{*}}^{p}\left(Q^{2}\right)$ to the first radial excited state. Data compilation from Diehl [32] (left) and JLAB [33] (right).

Guy de Teramond, sjb
JLab, March 12, 2011
Light-Front Holography and QCD
Stan Brodsky

$$
\begin{aligned}
& F\left(Q^{2}\right)=\frac{1}{1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}}, \quad N=2, \\
& F\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)}, \quad N=3, \\
& F\left(Q^{2}\right)=\frac{\cdots}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right) \cdots\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{N-2}}^{2}}\right)}, \quad N,
\end{aligned}
$$

Positive Dilaton Background $\exp \left(+\kappa^{2} z^{2}\right) \quad \mathcal{M}_{n}^{2}=4 \kappa^{2}\left(n+\frac{1}{2}\right)$

$$
F\left(Q^{2}\right) \rightarrow(N-1)!\left[\frac{4 \kappa^{2}}{Q^{2}}\right]^{(N-1)} \quad \begin{gathered}
Q^{2} \rightarrow \infty \\
\text { constituent counting }
\end{gathered}
$$

Chiral Features of Soft-Wall AdS/QCD Model

- Boost Invariant
- Trivial LF vacuum.

Proton spin
carried by quark angular momentum!

- Massless Pion
- Hadron Eigenstates have LF Fock components of different $L^{\mathbf{x}}$
- Proton: equal probability $S^{z}=+1 / 2, L^{z}=0 ; S^{z}=-1 / 2, L^{z}=+1$

$$
J^{z}=+1 / 2:<L^{z}>=1 / 2,<S_{q}^{z}=0>
$$

- Self-Dual Massive Eigenstates: Proton is its own chiral partner.
- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=o.

Running Coupling from Modified AdS/QCD

Deur, de Teramond, sjb

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \quad \text { or } \quad g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Nearly conformal QCD?

Define α_{s} from Björkén sum,

$$
\Gamma_{1}^{p-n} \equiv \int_{0}^{1} d x\left(g_{1}^{p}\left(x, Q^{2}\right)-g_{1}^{n}\left(x, Q^{2}\right)\right)=\frac{1}{6} g_{A}\left(1-\frac{\alpha_{s, g_{1}}}{\pi}\right)
$$

gl = spin dependent structure functio

JLab data from
EGI(2008), CLAS, and Hall A
α_{s} runs only
modestly at small Q^{2}

Deur, de Teramond, sjb

Running Coupling from Light-Front Holography and AdS/QCD Analytic, defined at all scales, IR Fixed Point

Deur, de Teramond, sjb

Deur, Korsch, et al.

JLab, March 12, 2011
Light-Front Holography and QCD

Sublimated Gluons

- AdS/QCD soft-wall model has confining potential . Gluon exchange absent.
- Coupling falls exponentially -- misses asymptotic freedom at large Q^{2}
- Interpretation: Gluons sublimated into potential below i GeV^{2} virtuality
- Higher Fock states with extra quark-antiquark pairs, no gluons

Higher Fock States

- Exposed by timelike form factor through dressed current.
- Created by confining interaction

$$
P_{\text {confinement }}^{-} \simeq \kappa^{4} \int d x^{-} d^{2} \vec{x}_{\perp} \frac{\bar{\psi} \gamma^{+} T^{a} \psi}{P^{+}} \frac{1}{\left(\partial / \partial_{\perp}\right)^{4}} \frac{\bar{\psi} \gamma^{+} T^{a} \psi}{P^{+}}
$$

- Similar to $\mathrm{QCD}(\mathrm{I}+\mathrm{I})$ in lcg

JLab, March 12, 2011
Light-Front Holography and QCD 80

Meson Transition Form-Factors

[S. J. Brodsky, Fu-Guang Cao and GdT, arXiv:1005.39XX]

- Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]

$$
\begin{aligned}
\int d^{4} x \int d z \epsilon^{L M N P Q} A_{L} \partial_{M} & A_{N} \partial_{P} A_{Q} \\
& \sim(2 \pi)^{4} \delta^{(4)}\left(p_{\pi}+q-k\right) F_{\pi \gamma}\left(q^{2}\right) \epsilon^{\mu \nu \rho \sigma} \epsilon_{\mu}(q)\left(p_{\pi}\right)_{\nu} \epsilon_{\rho}(k) q_{\sigma}
\end{aligned}
$$

- Take $A_{z} \propto \Phi_{\pi}(z) / z, \quad \Phi_{\pi}(z)=\sqrt{2 P_{q \bar{q}}} \kappa z^{2} e^{-\kappa^{2} z^{2} / 2}, \quad\left\langle\Phi_{\pi} \mid \Phi_{\pi}\right\rangle=P_{q \bar{q}}$
- Find $\quad\left(\phi(x)=\sqrt{3} f_{\pi} x(1-x), \quad f_{\pi}=\sqrt{P_{q \bar{q}}} \kappa / \sqrt{2} \pi\right)$

$$
Q^{2} F_{\pi \gamma}\left(Q^{2}\right)=\frac{4}{\sqrt{3}} \int_{0}^{1} d x \frac{\phi(x)}{1-x}\left[1-e^{-P_{q \bar{q}} Q^{2}(1-x) / 4 \pi^{2} f_{\pi}^{2} x}\right]
$$

normalized to the asymptotic DA $\quad\left[P_{q \bar{q}}=1 \rightarrow\right.$ Musatov and Radyushkin (1997)]

- Large Q^{2} TFF is identical to first principles asymptotic QCD result $\quad Q^{2} F_{\pi \gamma}\left(Q^{2} \rightarrow \infty\right)=2 f_{\pi}$
- The CS form is local in AdS space and projects out only the asymptotic form of the pion DA

Photon-to-pion transition form factor

JLab, March 12, 201 I
Light-Front Holography and QCD
Stan Brodsky

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)_{\text {de Teramond, sj }}} \\
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \quad \begin{array}{c}
\text { Holographic Variable }
\end{array} \\
-\frac{d}{d \zeta^{2}} \equiv \frac{k_{\perp}^{2}}{x(1-x)} \quad \begin{array}{c}
\text { LF Kinetic Energy in } \\
\text { momentum space }
\end{array}
\end{gathered}
$$

Assume LFWF is a dynamical function of the quark. antiquark invariant mass squared

$$
-\frac{d}{d \zeta^{2}} \rightarrow-\frac{d}{d \zeta^{2}}+\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x} \equiv \frac{k_{\perp}^{2}+m_{1}^{2}}{x}+\frac{k_{\perp}^{2}+m_{2}^{2}}{1-x}
$$

SLab, March 12, 2011

Result: Soft-Wall LFWF for massive constituents

$$
\psi\left(x, \mathbf{k}_{\perp}\right)=\frac{4 \pi c}{\kappa \sqrt{x(1-x)}} e^{-\frac{1}{2 \kappa^{2}}\left(\frac{\mathbf{k}_{\perp}^{2}}{x(1-x)}+\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x}\right)}
$$

LF WF in impact space: soft-wall model with massive quarks

$$
\begin{gathered}
\psi\left(x, \mathbf{b}_{\perp}\right)=\frac{c \kappa}{\sqrt{\pi}} \sqrt{x(1-x)} e^{-\frac{1}{2} \kappa^{2} x(1-x) \mathbf{b}_{\perp}^{2}-\frac{1}{2 \kappa^{2}}\left[\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x}\right]} \\
z \rightarrow \zeta \rightarrow \chi \\
\chi^{2}=b^{2} x(1-x)+\frac{1}{\kappa^{4}}\left[\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x}\right]
\end{gathered}
$$

SLab, March 12, 2011
Light-Front Holography and QCD
Stan Brodsky

JLab, March 12, 2011
Light-Front Holography and QCD
Stan Brodsky

Light and heavy mesons in a soft-wall holographic model

Valery E. Lyubovitskij* ${ }^{* \dagger}$, Tanja Branz ${ }^{1}$, Thomas Gutsche ${ }^{1}$, Ivan Schmidt ${ }^{2}$, Alfredo Vega ${ }^{2}$
${ }^{1}$ Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
${ }^{2}$ Departamento de Física y Centro Científico Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile

We study the spectrum and decay constants of light and heavy mesons in a soft-wall holographic approach, using the correspondence of string theory in Anti-de Sitter space and conformal field theory in physical space-time.

JLab, March 12, 2011
Light-Front Holography and QCD

Future Dírections

- BLFQ -- use AdS/QCD basis to diagonalize Hlf
- Lippmann-Schwinger -- perturbatively generate higher Fock States and systematically approach QCD Hiller and Chabysheva
- Hadronization at the Amplitude Level -- Off-Shell T-matrix convoluted with AdS/QCD LFWFs
- Hidden Color C. Ji , Lepage, sjb
- Intrinsic Heavy Quarks from confinement interaction
- Direct Processes at the LHC
- Dynamic vs. Static Structure Functions
- AdS/QCD for DVCS, Hadrons with Heavy Quarks
- LF Vacuum, In-Hadron Condensates, and the Cosmological Constant

Use AdS/CFT orthonormal Light Front Wavefunctions as abasis for diagonalizing the QCD LF Hamiltonian

- Good initial approximation
- Better than plane wave basis
- DLCQ discretization -- highly successful I+I
- Use independent HO LFWFs, remove CM motion
- Similar to Shell Model calculations
- Hamiltonian light-front field theory within an AdS/QCD basis.
J.P. Vary, H. Honkanen, Jun Li, P. Maris, A. Harindranath,
G.F. de Teramond, P. Sternberg, E.G. Ng, C. Yang, sjb

Set of transverse 2D HO modes for $n=1$

J.P. Vary, H. Honkanen, Jun Li, P. Maris, S.J. Brodsky, A. Harindranath, G.F. de Teramond, P. Sternberg, E.G. Ng, C. Yang, PRC

Features of Soft-Wall AdS/QCD

- Single-variable frame-independent radial Schrodinger equation
- Massless pion ($\mathbf{m}_{\mathbf{q}}=\mathbf{o}$)
- Regge Trajectories: universal slope in n and L
- Valid for all integer J \& S.
- Dimensional Counting Rules for Hard Exclusive Processes
- Phenomenology: Space-like and Time-like Form Factors
- LF Holography: LFWFs; broad distribution amplitude
- Large Nc limit not required
- Add quark masses to LF kinetic energy
- Systematically improvable -- diagonalize $H_{\text {LF }}$ on AdS basis

Features of AdS/QCD LF Holography

- Based on Conformal Scaling of Infrared QCD Fixed Point
- Conformal template: Use isometries of AdS5
- Interpolating operator of hadrons based on twist, superfield dimensions
- Finite Nc = 3: Baryons built on 3 quarks -- Large Nc limit not required
- Break Conformal symmetry with dilaton
- Dilaton introduces confinement -- positive exponent
- Origin of Linear and HO potentials: Stochastic arguments (Glazek); General 'classical' potential for Dirac Equation (Hoyer)
- Effective Charge from AdS/QCD at all scales
- Conformal Dimensional Counting Rules for Hard Exclusive Processes

A Theory of Everything Takes Place

String theorists have broken an impasse and may be on their way to converting this mathematical structure -physicists' best hope for unifying gravity and quantum theory -- into a single coherent theory.

Frank and Ernest

Copyright (c) 1994 by Thaves. Distributed from www.thecomics.com.

AdS/QCD and Light-Front Holography: A Novel Approach to Confinement and Non-Perturbative QCD

Workshop on Confinement Physics
March 12-15, 2012
Thomas Jefferson National
Accelerator Facility
Newport News, VA
Stan Brodsky
S!

